
Marco Procaccini*, Amin Sahebi*, Marco Barbone§, Georgi Gaydadjiev§, Wayne Luk§, Roberto Giorgi*

*University of Siena, Italy - §Imperial College London, UK

PARMA-DITAM Workshop
HiPEAC 2024 Conference

17-19 January. 2024, Munich - DE

Accelerating
Large-Scale Graph-Processing with FPGAs:

Lesson Learned and Future Directions

Accelerating Large-Scale Graph-Processing with FPGAs: Lesson Learned and Future Directions

Vertex
Edge

G(V,E)

Vertices

All the ecommerce space on the internet is driven by graphs.

Such as web or social networks, computational

problems, analytics, machine learning, etc.

Graphs: a common way to represent information

https://commons.wikimedia.org/wiki/Category:Sociology

2

Accelerating Large-Scale Graph-Processing with FPGAs: Lesson Learned and Future Directions

Why processing graphs

● Analyzing data to get more knowledge
● Improve the process efficiency
● Get insights/recommendations with machine

learning and reducing the overall cost

https://www.infoq.com/news/2018/06/aws-neptune-graph-ga/

3

Accelerating Large-Scale Graph-Processing with FPGAs: Lesson Learned and Future Directions

What are the Challenges?

● Graphs are getting bigger and bigger every day!
○ Large-scale graphs size is in the order of GB/TB
○ Scalability:

ability to adapt to larger and larger graphs

● Computing graphs in an efficient way
○ The irregular structure of the graph usually leads

to a highly random memory access
which typically impact negatively CPU and GPU
memory hierarchy performance

○ Scarce locality:
data accessed randomly throughout the memory

4

Accelerating Large-Scale Graph-Processing with FPGAs: Lesson Learned and Future Directions

Cache performance for large and sparse graphs

Real world
database

V E Size on Disk

P2p-Gnutella 6301 20777 211 K

Wiki-vote 7,115 103,689 1 MB

Soc-Slashdot 77,360 905,468 11 MB

web-NotreDame 325,729 1,497,134 21 MB

web-BerkStan 685,230 7,600,595 106 MB

wiki-Talk 2,394,385 5,021,410 64 MB

soc-Pokec 1,632,803 30,622,564 405 MB

soc-LiveJournal 4,847,571 68,993,773 1.1 GB

When the graph size fits the cache,

the L3 cache misses are low

When the graphs size exceeds

L3 cache size,

the L3 cache misses jump to 60%

Synthetic
database

V E Size on Disk

RndG-1K 1000 10,000 76 KB
RndG-10k 10K 100K 1 MB

RndG-500k 50K 500K 5.6 MB

RndG-100k 100K 1M 12 MB
RndG-700k 700K 7M 92M

RndG-1M 1M 10M 132 MB

RndG-2M 2M 20M 284 MB

RndG-5M 5M 50M 760 MB

RndG-10M 10M 100M 1.5 GB

Intel Core i7-8700K

 – 6 Cores (12 hw-threads), Freq 3.60 GHz

L1i Cache 32K

L1d Cache 32K

L2 Cache 256 K

L3 Cache 12288K (each hw-thread 1MB)

PAPI Version: 6.0.0.1

RndGraph vertices

5

Accelerating Large-Scale Graph-Processing with FPGAs: Lesson Learned and Future Directions

Why Partitioning?

1. If the graph is big, it does not fit in memory
2. It is unlikely that the graph fits in cache

● Problem: most algorithms perform
random memory accesses

● A possible solution is
to partition the graph into chunks
that fit in cache and/or memory

1

3

4

2

6

Accelerating Large-Scale Graph-Processing with FPGA-Based Distributed Computing

GridGraph EverythingGraph Ligra

https://github.com/thu-pacman/GridGraph.git

1) Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: large-scale graph processing on a single machine using 2-level hierarchical partitioning. In Proceedings of the 2015 USENIX

Conference on Usenix Annual Technical Conference (USENIX ATC '15). USENIX Association, USA, 375–386.

https://github.com/jmalicevic/EverythingGraph.git

2) Jasmina Malicevic, Baptiste Lepers, and Willy Zwaenepoel. 2017. Everything you always wanted to know about multicore graph processing but were afraid to ask. In Proceedings of the 2017 USENIX Conference on

Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, USA, 631–643.

3) Julian Shun and Guy E. Blelloch. 2013. Ligra: a lightweight graph processing framework for shared memory. SIGPLAN Not. 48, 8 (August 2013), 135–146.

Software Baseline

https://github.com/jshun/ligra.git

Multicore OpenMP and Cilk

implementation

Multicore Implementation

using Grid Preprocessing

and OpenMP

Comparison the existing

algorithm and

implementations and

discuss which approach is

suitable for which problem

7

Accelerating Large-Scale Graph-Processing with FPGA-Based Distributed Computing

Baseline (execution time metric)

The baseline for above mentioned applications is the parallel (multicore) implementation on Conventional Machines. C/C++

implementation using parallelizing Multithread libraries such as OpenMP or opencilk!

End-to-end time = Pre-processing + Algorithm time We have to measure end to

end time.

Social Network Dataset: soc-LiveJournal

Nodes 4,847,571

Edges 68,993,773

10 Iteration over 12 Cores

(experiment re-done locally from

the available source code –see previous slide)

0

5

10

15

20

25

30

35

40

GridGraph Ligra(CILK) EverythingGraph
(OpenMP)

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Preprocess

Algorithm (PageRank)

8

Accelerating Large-Scale Graph-Processing with FPGAs: Lesson Learned and Future Directions

Preprocessing Step: GridGraph Partitioning Method

0

0

1

2

3

321

Block (0,0)

Block (3,3)

Data chunks are

almost with same

size all over the

graph dataset

Vertex destinations

V
e
rt

e
x
 S

o
u
rc

e
s

Number of Links (Edges)

N
u

m
b

e
r

o
f
N

o
d

e
s
 w

it
h

 K
 l
in

k
s
 (

E
d

g
e

s
)

Many nodes with

only a few or no

edges

Few nodes with

biggest number of

edges

1

3
4

2

(1,2)
(2,1)

(3,1)
(3,2)

(2,4)
(2,3)
(1,3)

(4,3)

Block (0,0)

The challenge of partitioning is

Real-world Powerlaw graphs

which produces uneven block

sizes of edge data

A given sample graph

Partitioning based on GridGraph* approach

* Xiaowei Zhu, Wentao Han, and Wenguang Chen. “GridGraph: Large-Scale Graph Processing on a Single Machine Using 2-Level Hierarchical Partitioning”. USENIX ATC ’15. Santa Clara,

9

Block (1,0)

Block (0,1) Block (1,1)

Chunk_0 {1,2}

Chunk_1 {3,4}

Accelerating Large-Scale Graph-Processing with FPGAs: Lesson Learned and Future Directions

Lesson Learned: GridGraph partitioning technique can be
further optimized

10

0E+0

5E+6

1E+7

2E+7

2E+7

3E+7

3E+7

4E+7

4E+7

N
u

m
b

er
 o

f
Ed

ge
s

GRID-GRAPH PARTITIONIG

● GridGraph produces unbalanced edge-blocks

● For example, in the the LiveJournal dataset,
most of the edges are placed in the block-0

● Problem: this creates unbalanced workload

Unbalanced Block

GridGraph partitioning analysis of the LiveJournal dataset

Accelerating Large-Scale Graph-Processing with FPGAs: Lesson Learned and Future Directions

Sub-blocks partitioning (hierarchical partitioning)

➢ Graphs are large-scale and each partitions will be in order of some GB
➢ A sub-block partitioning is needed to assign each sub-block to a specific resource
➢ Blocks are streamed-in sequentially and treated independently
➢ Memory access in each block is random

Partitioning Large

Scale Graph in order

of hundreds of GB or

some TB into blocks

Dedicate them

to the specific

resource

block

0

block

m

bloc

k n

…
… FPGA 1

FPGA 2

From block-0-0

to block-k-n will

be dedicated on

the First FPGA

With the same

order the next

blocks will be

dedicated to the

 next available

resources

The access in

each block is

Random.

11

Accelerating Large-Scale Graph-Processing with FPGAs: Lesson Learned and Future Directions

Why distributed?

● Both the “data size” and “computation” are
expensive and time consuming on one single node

● Data intensive problems need
a combination of nodes in a network to solve the problem

● Advantages
○ Resources sharing
○ Economics: distributed is less expensive and can be easily be on cloud
○ Scalability is achieved by using the appropriate number of nodes

● Disadvantages
○ Communication issues
○ Faults are more frequent

12

Choosing an appropriate hardware

To achieve scaling: a distributed Graph Processing Framework on FPGA clusters is a challenge

FPGAs

Advantages

Disadvantages

Hard to develop, not easy and not flexible

programming environment,

Is not flexible with MATH operations like floating

point

Easy to have rapid prototype application specific hardware

Do not need to decode instructions, it’s Data-Driven

Massive parallelism scale

In the case of Random Memory accesses and Branch-Prediction problem in

CPU or GPU, FPGA could easily alleviate these problem by its structure

Large cumulated bandwidth on-chip memory (BRAMS), store reusable data

and take advantage of temporal locality

Power Efficient

Accelerating Large-Scale Graph-Processing with FPGA-Based Distributed Computing

Running on CPU and GPU?

• Poor locality
• Lack of scalability
• Random data access pattern
• Heavy data conflicts

FPGA can be the optimal candidate because of many good features that can overcome CPU and GPU

General Purpose

CPUs

Advantages Disadvantages

Development time,

less effort to

program

Fixed memory access granularity based on cache line size

Do not have flexible high-degree parallelism

Cache problem with irregular graph processing with Little

or No temporal and Spatial Locality

GPUs
Advantages Disadvantages

Poorly managing irregular accessesEasy to develop, high-degree of data parallelism

13

Accelerating Large-Scale Graph-Processing with FPGAs: Lesson Learned and Future Directions

A Taxonomy of the more similar related studies

Work Distributed Language Implementation Access to

Host Memory

Evaluation

Size

Public

repository?

FPGA Platform Year

ForeGraph[1] Yes HDL Simulation No Medium No Xilinx VCU110 2017

FabGraph[2] No HLS Simulation No Medium No Xilinx VCU110

and VCU118

2019

HitGraph[3] No HDL Hardware No Small Yes Xilinx Virtex US+ 2019

ThunderGP[4] No HLS Hardware No Medium Yes Alveo Family 2021

GraVF-M[5] Yes Python No Medium Yes Micron Pico se-6

platform

2019

GridGas[6] Yes HDL Hardware Yes Medium No Xilinx Kintex 2018

FPGP[7] No HDL Hardware No Medium No Xilinx Virtex-7 2016

Ref[8] No Chisel Hardware No Large No Xilinx Virtex US+

(AWS Platform)

2021

GraphOps[9] No MAXJ Hardware No Small Yes Maxeler Boards 2016

This work Yes HLS Hardware Yes Very Large Yes Alveo Family 2023

*References in the next page

The repository is for

public access:

https://github.com/A

minSahebi/distribute

d-graph-fpga

14

https://github.com/AminSahebi/distributed-graph-fpga
https://github.com/AminSahebi/distributed-graph-fpga
https://github.com/AminSahebi/distributed-graph-fpga

Accelerating Large-Scale Graph-Processing with FPGAs: Lesson Learned and Future Directions

Related studies

[1] Guohao Dai, Tianhao Huang, Yuze Chi, et al. “ForeGraph: Exploring Large-Scale Graph Processing on Multi-

FPGA Architecture”. In: Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays.

[2] Zhiyuan Shao, Ruoshi Li, Diqing Hu, Xiaofei Liao, and Hai Jin. “Improving Performance of Graph Processing on

FPGA-DRAM Platform by Two-level Vertex Caching”, 2019.

[3] Shijie Zhou, Rajgopal Kannan, Viktor K. Prasanna, Guna Seetharaman, and Qing Wu. “HitGraph: High-

throughput Graph Processing Framework on FPGA”. In: IEEE Transactions on Parallel and Distributed

Systems(2019)

[4] Xinyu Chen, Hongshi Tan, Yao Chen, et al. “ThunderGP: HLS-Based Graph Processing Framework on FPGAs”.

In: The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. FPGA ’21

[5] Nina Engelhardt and Hayden K.-H. So. “GraVF-M: Graph Processing System Generation for Multi-FPGA

Platforms”. In: ACM Trans. 2019

[6] Yu Zou and Mingjie Lin. “GridGAS: An I/O-Efficient Heterogeneous FPGA+CPU Computing Platform for Very

Large-Scale Graph Analytics”. In: 2018 International Conference on Field-Programmable Technology (FPT). 2018

[7] Guohao Dai, Yuze Chi, Yu Wang, and Huazhong Yang. “FPGP: Graph Processing Framework on FPGA A Case

Study of Breadth-First Search”. In: Proceedings of the 2016 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays. FPGA ’16

[8] Mikhail Asiatici and Paolo Ienne. “Large-Scale Graph Processing on FPGAs with Caches for Thousands of

Simultaneous Misses”. In: 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA)

[9] Tayo Oguntebi and Kunle Olukotun. “GraphOps: A Dataflow Library for Graph Analytics Acceleration”. In:

Proceedings of the 2016 ACM/SIGDA International Symposium on Field Programmable Gate Arrays. FPGA ’16

15

Accelerating Large-Scale Graph-Processing with FPGAs: Lesson Learned and Future Directions

The Architecture from high-level perspective

We consider

Hadoop as the

High-level Data

Management Layer

iteration

We aim at using

both CPUs and FPGAs

as workers, for now we have

achieved one CPU as host and

multiple FPGAs as workers

16

Accelerating Large-Scale Graph-Processing with FPGAs: Lesson Learned and Future Directions

Block streaming to FPGA

Graph

Input
0

0

1

2

3

321

Block (0,0)

Block (3,3)

Vertex destinations

V
e
rt

e
x
 S

o
u
rc

e
s

Blocks will be streamed

sequentially from CPU

to FPGA via PCIe

(for the first scenario

we decided to skip

board-DRAM, and

directly read and write

from PCIe to FPGA)

Blocks are queued in

RAM and transferred

sequentially to the FPGA

via PCIe. On-Board

Memory unused since

there is not partition reuse

between iterations

Dataset edge

array turn

into Grid

structure

using offline

partitioning

17

Accelerating Large-Scale Graph-Processing with FPGAs: Lesson Learned and Future Directions

The Hardware Design

Port A Port B

01023

18K 18K 18K 18K 18K. . .

18K 18K 18K 18K 18K. . .

. .
 .

18K

18K

18K

18K

DFE Kernels PCIe Lanes

SL
iC

 In
te

rf
ac

e

Host CPU

Host DDR Memory

Memory Controller

Global Memory

LMEMLMEMOff-chip Memory

On-chip Memory
B/URAM Edge Blocks

Memory Controller

PEPEPE

Compute

Ed
ge

 B
u

ff
e

r

Sr
c

b
u

ff
e

r

D
st

 b
u

ff
e

r

Vertex data

Memory
Controller

O
n

-C
h

ip
 M

em
o

ry

18Kb

18 bits

1024

51 Blocks for 1024
width of memory port

Read/Write
from/to
Kernels

Multi-port configuration
needs more resources but provides Parallel Rd/Wr

access in one clock cycle.

Column based stream
order of block edges

Edge blocks Stream
from PCIe(sequentially)

Update Output

Configurations/
Parameters

Based on Xilinx Family FPGA BRAM configurations
https://docs.xilinx.com/v/u/en-US/pg078-axi-bram-ctrl

18

https://docs.xilinx.com/v/u/en-US/pg078-axi-bram-ctrl

Accelerating Large-Scale Graph-Processing with FPGAs: Lesson Learned and Future Directions

BRAM mapping (Block-RAM)

On-chip Memory
B/URAM Edge BlocksVertex data

Port A Port B

O
n

-C
h

ip
 M

em
o

ry

18Kb

18 bits

1024

51 Blocks for 1024
width of memory port

Read/Write
from/to
Kernels

Lesson Learned: finding the optimal configuration to allocate memory on BRAM is a key

• With smaller chunks we need to allocate many memories and therefore more ports
will be created, and eventually more hardware will be utilized

• With wider bit width and bigger chunk or allocated memory we have less utilization of
resources but harder to meet the timing constraints

We decided to read/write
directly from PCIe to the FPGA,
so, the board DDR is not used

Read/Write
from/to the Host

PCIe DMA
Host CPU

PCIe Lanes

P
C

Ie
 C

o
n

tr
o

lle
r

18K 18K 18K 18K 18K. . .

18K 18K 18K 18K 18K. . .

. .
 .

18K

18K

18K

18K

19

Accelerating Large-Scale Graph-Processing with FPGAs: Lesson Learned and Future Directions

Mapping PageRank onto FPGA Processing Elements

PEPEPE

Processing Elements (PE)

Compute

E
d

g
e

B
u

ff
e

r

S
rc

 b
u

ff
e
r

D
s
t

b
u

ff
e
r

Algorithm 2. PageRank algorithm with streaming vertexes and Grid Edge blocks

1 𝑮(𝑉, 𝐸) ⊳ Given Input Graph
2 𝑃𝑟 = [1, … 1] ⊳ PageRank array with size 𝑉
3 𝑑 = 0.85 ⊳ Damping factor often consider 0.85
4 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 = 0

5 While ¬𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 do
6 𝑁𝑒𝑤𝑃𝑟 = [0, … 0]
7 for each 𝑒𝑑𝑔𝑒 ∈ 𝑏𝑙𝑜𝑐𝑘 do
8 𝐴𝐷𝐷 (&𝑁𝑒𝑤Pr 𝑒𝑑𝑔𝑒. 𝑑𝑒𝑠𝑡 ,

Pr [𝑒𝑑𝑔𝑒 .𝑠𝑜𝑢𝑟𝑐𝑒]

𝐷𝑒𝑔 [𝑒𝑑𝑔𝑒 .𝑠𝑜𝑢𝑟𝑐𝑒]
)

9 end for
10 for each 𝑉𝑒𝑟𝑡𝑒𝑥 ∈ 𝑉 do
11
21

 𝑁𝑒𝑤𝑃𝑟[𝑣] ← 0.15 + 0.85 × 𝑁𝑒𝑤𝑃𝑟[𝑣]
 diff = |𝑁𝑒𝑤𝑃𝑟 𝑣 − Pr[𝑣]|

13 end for
14 Swap (PR, NewPR)
15 Converged =

𝑫𝒊𝒇𝒇

|𝒗|
≤ 𝜺

16 End While

HLS Kernels

and

Functions

Xiaowei Zhu, Wentao Han, and Wenguang Chen. “GridGraph: Large-Scale Graph Processing on a Single Machine Using 2-Level Hierarchical Partitioning”, 2015.

Larry Page and Sergey Brin and R. Motwani and T. Winograd, “The PageRank Citation Ranking: Bringing Order to the Web”, 1998.

20

Accelerating Large-Scale Graph-Processing with FPGAs: Lesson Learned and Future Directions

The Evaluation Setup and the datasets

The XACC Xilinx server used to evaluate the real implementation

The Alveo U250 resource utilization in this experiment

21

Dataset of the experiments

Accelerating Large-Scale Graph-Processing with FPGAs: Lesson Learned and Future Directions

The Evaluation Results

22

1
.8

7
.6

3

5
.1

2

0
.3

4

9
.7

2

0

2

4

6

8

10

12

O PE N M P G R ID G R APH C U G R A PH V I T IS L IB O U R W O R K

G PU FPG A

SP
EE

D
U

P

LIVEJOURNAL

1
.2

9

8
.5

3

3
.0

4

1
3

.3
7

0

2

4

6

8

10

12

14

16

OPE N M P G RID G R A PH C UG R APH V IT IS L IB O UR W O R K

G PU FPG A

SP
EE

D
U

P

WEB-UK-2005

1
.7

8

1
1

.7
8

2
5

.9
5

0

5

10

15

20

25

30

O PE N M P G R ID G R APH C U G R A PH V I T IS L IB O U R W O R K

G PU FPG A

SP
EE

D
U

P

TWITTER

2
.3

8

1
6

.0
1

2
3

.6
7

0

5

10

15

20

25

OPE N M P G RID G R A PH C UG R APH V IT IS L IB O UR W O R K

G PU FPG A

SP
EE

D
U

P

FRIENDSTER

● Speedup evaluation of a single FPGA
implementation against sequential
CPU execution

● CPU comparison with OpenMP and
GridGraph

● GPU comparison with cuGraph

● FPGA comparison with the PageRank
algorithm available in the AMD/Xilinx
Vitis Library

[1] Sahebi, A., Barbone, M., Procaccini, M., Luk, W., Gaydadjiev, G., & Giorgi, R. (2023). Distributed large-scale graph processing on FPGAs. Journal of Big Data, 10(1), 1-28.

Accelerating Large-Scale Graph-Processing with FPGA-Based Distributed Computing

[1] Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Commun ACM. 2008;51(1):107–13.
[2] Karloff H, Suri S, Vassilvitskii S. A model of computation for mapreduce. In: Proceedings of the twenty-first annual ACM-SIAM symposium on discrete
algorithms. SIAM, ACM: Austin; 2010. p. 938–948.

Hadoop Performance Model

23

• The Hadoop framework has been extensively studied in the literature, and its performance is

modelled and predictable [1,2]

• We forecast the performance by leveraging performance model already available [1,2] due to the

lack of an Hadoop cluster equipped with FPGAs

Accelerating Large-Scale Graph-Processing with FPGA-Based Distributed Computing

Hadoop Performance Model Evaluation

24

0

10

20

30

40

50

60

70

80

90

100

51 80 90

P
e

rc
en

ta
ge

 t
im

e
re

d
u

ct
io

n

Percentage time spent executing Map

Hadoop perfomance forecast

• Assumption that most of the time is spent in the mapping phase

• The performance model has been tuned with the results obtained in the single FPGA evaluation

Accelerating Large-Scale Graph-Processing with FPGAs: Lesson Learned and Future Directions

Lesson Learned and Future Direction

1) Distributed computation across multicore+multifpga clusters is a promising platform to process large-scale graphs

2) Appropriate partitioning and block-scheduling may be needed to achieve a better load balance, mostly when
unbalanced graphs are used (i.e., “natural graphs”)

3) Memory access patterns to process large-graphs may easily downgrade the performance (i.e., cache pollution)

4) The Host-FPGA communication overhead must be deeply evaluated to find further improvements.

5) The parallelism of the Hardware Model can be further improved

6) The model must be evaluated with a more comprehensive benchmark set

25

Please refer to this paper regarding this work: https://doi.org/10.1186/s40537-023-00756-x
Sahebi, A., Barbone, M., Procaccini, M., Luk, W., Gaydadjiev, G., & Giorgi, R. (2023).
Distributed large-scale graph processing on FPGAs. Journal of Big Data, 10(1), 1-28.

https://doi.org/10.1186/s40537-023-00756-x

Thank you for you attention! ☺

26

	Slide 1: Marco Procaccini*, Amin Sahebi*, Marco Barbone§, Georgi Gaydadjiev§, Wayne Luk§, Roberto Giorgi* *University of Siena, Italy - §Imperial College London, UK
	Slide 2: Graphs: a common way to represent information
	Slide 3: Why processing graphs
	Slide 4: What are the Challenges?
	Slide 5: Cache performance for large and sparse graphs
	Slide 6: Why Partitioning?
	Slide 7
	Slide 8
	Slide 9: Preprocessing Step: GridGraph Partitioning Method
	Slide 10: Lesson Learned: GridGraph partitioning technique can be further optimized
	Slide 11: Sub-blocks partitioning (hierarchical partitioning)
	Slide 12: Why distributed?
	Slide 13: Choosing an appropriate hardware
	Slide 14: A Taxonomy of the more similar related studies
	Slide 15: Related studies
	Slide 16: The Architecture from high-level perspective
	Slide 17: Block streaming to FPGA
	Slide 18: The Hardware Design
	Slide 19: BRAM mapping (Block-RAM)
	Slide 20: Mapping PageRank onto FPGA Processing Elements
	Slide 21: The Evaluation Setup and the datasets
	Slide 22: The Evaluation Results
	Slide 23: Hadoop Performance Model
	Slide 24: Hadoop Performance Model Evaluation
	Slide 25: Lesson Learned and Future Direction
	Slide 26: Thank you for you attention!

