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Vertex
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Vertices

All the ecommerce space on the internet is driven by graphs. 

Such as web or social networks, computational 

problems, analytics, machine learning, etc.

Graphs: a common way to represent information

https://commons.wikimedia.org/wiki/Category:Sociology
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Why processing graphs

● Analyzing data to get more knowledge
● Improve the process efficiency
● Get insights/recommendations with machine 

learning and reducing the overall cost

https://www.infoq.com/news/2018/06/aws-neptune-graph-ga/
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What are the Challenges?

● Graphs are getting bigger and bigger every day!
○ Large-scale graphs size is in the order of GB/TB
○ Scalability:

ability to adapt to larger and larger graphs

● Computing graphs in an efficient way
○ The irregular structure of the graph usually leads

to a highly random memory access
which typically impact negatively CPU and GPU
memory hierarchy performance

○ Scarce locality:
data accessed randomly throughout the memory
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Cache performance for large and sparse graphs

Real world 
database

V E Size on Disk

P2p-Gnutella 6301 20777 211 K

Wiki-vote 7,115 103,689 1 MB

Soc-Slashdot 77,360 905,468 11 MB

web-NotreDame 325,729 1,497,134 21 MB

web-BerkStan 685,230 7,600,595 106 MB

wiki-Talk 2,394,385 5,021,410 64 MB

soc-Pokec 1,632,803 30,622,564 405 MB

soc-LiveJournal 4,847,571 68,993,773 1.1 GB

When the graph size fits the cache,

the L3 cache misses are low

When the graphs size exceeds 

L3 cache size, 

the L3 cache misses jump to 60%

Synthetic 
database

V E Size on Disk

RndG-1K 1000 10,000 76 KB
RndG-10k 10K 100K 1 MB

RndG-500k 50K 500K 5.6 MB

RndG-100k 100K 1M 12 MB
RndG-700k 700K 7M 92M

RndG-1M 1M 10M 132 MB

RndG-2M 2M 20M 284 MB

RndG-5M 5M 50M 760 MB

RndG-10M 10M 100M 1.5 GB

Intel Core i7-8700K

 – 6 Cores (12 hw-threads), Freq 3.60 GHz

L1i Cache 32K

L1d Cache 32K

L2 Cache 256 K

L3 Cache 12288K (each hw-thread 1MB)

PAPI  Version: 6.0.0.1

RndGraph vertices
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Why Partitioning?

1. If the graph is big, it does not fit in memory
2. It is unlikely that the graph fits in cache

● Problem: most algorithms perform
random memory accesses

● A possible solution is
to partition the graph into chunks
that fit in cache and/or memory

1

3

4

2
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GridGraph EverythingGraph Ligra

https://github.com/thu-pacman/GridGraph.git

1) Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: large-scale graph processing on a single machine using 2-level hierarchical partitioning. In Proceedings of the 2015 USENIX 

Conference on Usenix Annual Technical Conference (USENIX ATC '15). USENIX Association, USA, 375–386.

https://github.com/jmalicevic/EverythingGraph.git

2) Jasmina Malicevic, Baptiste Lepers, and Willy Zwaenepoel. 2017. Everything you always wanted to know about multicore graph processing but were afraid to ask. In Proceedings of the 2017 USENIX Conference on 

Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, USA, 631–643.

3) Julian Shun and Guy E. Blelloch. 2013. Ligra: a lightweight graph processing framework for shared memory. SIGPLAN Not. 48, 8 (August 2013), 135–146.

Software Baseline

https://github.com/jshun/ligra.git

Multicore OpenMP and Cilk 

implementation

Multicore Implementation 

using Grid Preprocessing 

and OpenMP

Comparison the existing 

algorithm and 

implementations and 

discuss which approach is 

suitable for which problem 
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Baseline (execution time metric)

The baseline for above mentioned applications is the parallel (multicore) implementation on Conventional Machines. C/C++ 

implementation using parallelizing Multithread libraries such as OpenMP or opencilk!  

End-to-end time = Pre-processing + Algorithm time We have to measure end to 

end time.

Social Network Dataset: soc-LiveJournal

Nodes 4,847,571

Edges 68,993,773

10 Iteration over 12 Cores

(experiment re-done locally from 

the available source code –see previous slide)
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Preprocessing Step: GridGraph Partitioning Method

0

0

1

2

3

321

Block (0,0)

Block (3,3)

Data chunks are 

almost with same 

size all over the 

graph dataset

Vertex destinations

V
e
rt

e
x
 S

o
u
rc

e
s

Number of Links (Edges)

N
u

m
b

e
r 

o
f 
N

o
d

e
s
 w

it
h

 K
 l
in

k
s
 (

E
d

g
e

s
)

Many nodes with 

only a few or no 

edges

Few nodes with 

biggest number of 

edges

1

3
4

2

(1,2)
(2,1)

(3,1)
(3,2)

(2,4)
(2,3)
(1,3)

(4,3)

Block (0,0)

The challenge of partitioning is

Real-world Powerlaw graphs 

which produces uneven block 

sizes of edge data

A given sample graph

Partitioning based on GridGraph* approach

* Xiaowei Zhu, Wentao Han, and Wenguang Chen. “GridGraph: Large-Scale Graph Processing on a Single Machine Using 2-Level Hierarchical Partitioning”. USENIX ATC ’15. Santa Clara,
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Lesson Learned: GridGraph partitioning technique can be 
further optimized 
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GRID-GRAPH PARTITIONIG

● GridGraph produces unbalanced edge-blocks

● For example, in the the LiveJournal dataset, 
most of the edges are placed in the block-0

● Problem: this creates unbalanced workload 

Unbalanced Block

GridGraph partitioning analysis of the LiveJournal dataset 
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Sub-blocks partitioning (hierarchical partitioning) 

➢ Graphs are large-scale and each partitions will be in order of some GB
➢ A sub-block partitioning is needed to assign each sub-block to a specific resource
➢ Blocks are streamed-in sequentially and treated independently
➢ Memory access in each block is random

Partitioning Large 

Scale Graph in order 

of hundreds of GB or 

some TB into blocks 

Dedicate them 

to the specific 

resource

block 

0

block 

m

bloc

k n

…
… FPGA 1

FPGA 2

From block-0-0 

to block-k-n will

be dedicated on

the First FPGA

With the same 

order the next 

blocks will be 

dedicated to the

 next available 

resources

The access in 

each block is 

Random.
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Why distributed?

● Both the “data size” and “computation” are
expensive and time consuming on one single node

● Data intensive problems need
a combination of nodes in a network to solve the problem

● Advantages
○ Resources sharing
○ Economics: distributed is less expensive and can be easily be on cloud
○ Scalability is achieved by using the appropriate number of nodes

● Disadvantages
○ Communication issues
○ Faults are more frequent
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Choosing an appropriate hardware

To achieve scaling: a distributed Graph Processing Framework on FPGA clusters is a challenge

FPGAs

Advantages

Disadvantages

Hard to develop, not easy and not flexible 

programming environment,

Is not flexible with MATH operations like floating 

point

Easy to have rapid prototype application specific hardware

Do not need to decode instructions, it’s Data-Driven

Massive parallelism scale

In the case of Random Memory accesses and Branch-Prediction problem in 

CPU or GPU, FPGA could easily alleviate these problem by its structure

Large cumulated bandwidth on-chip memory (BRAMS), store reusable data 

and take advantage of temporal locality

Power Efficient

Accelerating Large-Scale Graph-Processing with FPGA-Based Distributed Computing

Running on CPU and GPU?

• Poor locality
• Lack of scalability
• Random data access pattern
• Heavy data conflicts 

FPGA can be the optimal candidate because of many good features that can overcome CPU and GPU

General Purpose 

CPUs

Advantages Disadvantages

Development time, 

less effort to 

program

Fixed memory access granularity based on cache line size

Do not have flexible high-degree parallelism

Cache problem with irregular graph processing with Little 

or No temporal and Spatial Locality

GPUs
Advantages Disadvantages

Poorly managing irregular accessesEasy to develop, high-degree of data parallelism

13
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A Taxonomy of the more similar related studies

Work Distributed Language Implementation Access to 

Host Memory

Evaluation 

Size

Public 

repository? 

FPGA Platform Year

ForeGraph[1] Yes HDL Simulation No Medium No Xilinx VCU110 2017

FabGraph[2] No HLS Simulation No Medium No Xilinx VCU110 

and VCU118

2019

HitGraph[3] No HDL Hardware No Small Yes Xilinx Virtex US+ 2019

ThunderGP[4] No HLS Hardware No Medium Yes Alveo Family 2021

GraVF-M[5] Yes Python No Medium Yes Micron Pico se-6 

platform

2019

GridGas[6] Yes HDL Hardware Yes Medium No Xilinx Kintex 2018

FPGP[7] No HDL Hardware No Medium No Xilinx Virtex-7 2016

Ref[8] No Chisel Hardware No Large No Xilinx Virtex US+

(AWS Platform)

2021

GraphOps[9] No MAXJ Hardware No Small Yes Maxeler Boards 2016

This work Yes HLS Hardware Yes Very Large Yes Alveo Family 2023

*References in the next page

The repository is for 

public access:

https://github.com/A

minSahebi/distribute

d-graph-fpga 
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Related studies

[1] Guohao Dai, Tianhao Huang, Yuze Chi, et al. “ForeGraph: Exploring Large-Scale Graph Processing on Multi-

FPGA Architecture”. In: Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate 

Arrays. 

[2] Zhiyuan Shao, Ruoshi Li, Diqing Hu, Xiaofei Liao, and Hai Jin. “Improving Performance of Graph Processing on 

FPGA-DRAM Platform by Two-level Vertex Caching”, 2019.

[3] Shijie Zhou, Rajgopal Kannan, Viktor K. Prasanna, Guna Seetharaman, and Qing Wu. “HitGraph: High-

throughput Graph Processing Framework on FPGA”. In: IEEE Transactions on Parallel and Distributed 

Systems(2019)

[4] Xinyu Chen, Hongshi Tan, Yao Chen, et al. “ThunderGP: HLS-Based Graph Processing Framework on FPGAs”. 

In: The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. FPGA ’21

[5] Nina Engelhardt and Hayden K.-H. So. “GraVF-M: Graph Processing System Generation for Multi-FPGA 

Platforms”. In: ACM Trans. 2019

[6] Yu Zou and Mingjie Lin. “GridGAS: An I/O-Efficient Heterogeneous FPGA+CPU Computing Platform for Very 

Large-Scale Graph Analytics”. In: 2018 International Conference on Field-Programmable Technology (FPT). 2018

[7] Guohao Dai, Yuze Chi, Yu Wang, and Huazhong Yang. “FPGP: Graph Processing Framework on FPGA A Case 

Study of Breadth-First Search”. In: Proceedings of the 2016 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays. FPGA ’16

[8] Mikhail Asiatici and Paolo Ienne. “Large-Scale Graph Processing on FPGAs with Caches for Thousands of 

Simultaneous Misses”. In: 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA)

[9] Tayo Oguntebi and Kunle Olukotun. “GraphOps: A Dataflow Library for Graph Analytics Acceleration”. In: 

Proceedings of the 2016 ACM/SIGDA International Symposium on Field Programmable Gate Arrays. FPGA ’16
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The Architecture from high-level perspective

We consider 

Hadoop as the 

High-level Data 

Management Layer

iteration

We aim at using 

both CPUs and FPGAs

as workers, for now we have 

achieved one CPU as host and 

multiple FPGAs as workers
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Block streaming to FPGA
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Blocks will be streamed 

sequentially from  CPU 

to FPGA via PCIe

(for the first scenario 

we decided to skip 

board-DRAM, and 

directly read and write 

from PCIe to FPGA) 

Blocks are queued in 

RAM and transferred 

sequentially to the FPGA 

via PCIe. On-Board 

Memory unused since 

there is not partition reuse 

between iterations

Dataset edge 

array turn 

into Grid 

structure 

using offline 

partitioning
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The Hardware Design
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Multi-port configuration
needs more resources but provides Parallel Rd/Wr 

access in one clock cycle.

Column based stream 
order of block edges

Edge blocks Stream 
from PCIe(sequentially)

Update Output

Configurations/
Parameters

Based on Xilinx Family FPGA BRAM configurations 
https://docs.xilinx.com/v/u/en-US/pg078-axi-bram-ctrl
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BRAM mapping (Block-RAM)
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Lesson Learned: finding the optimal configuration to allocate memory on BRAM is a key 

• With smaller chunks we need to allocate many memories and therefore more ports 
will be created, and eventually more hardware will be utilized

• With wider bit width and bigger chunk or allocated memory we have less utilization of 
resources but harder to meet the timing constraints

We decided to read/write 
directly from PCIe to the FPGA,
so, the board DDR is not used

Read/Write 
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PCIe DMA
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Mapping PageRank onto FPGA Processing Elements
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Algorithm 2. PageRank algorithm with streaming vertexes and Grid Edge blocks 

1 𝑮(𝑉, 𝐸)                            ⊳ Given Input Graph  
2 𝑃𝑟 = [1, … 1]                  ⊳ PageRank array with size  𝑉    
3 𝑑 = 0.85                          ⊳ Damping factor often consider 0.85 
4 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 = 0                     
  
5    While  ¬𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 do 
6  𝑁𝑒𝑤𝑃𝑟 = [0, … 0] 
7  for each 𝑒𝑑𝑔𝑒  ∈  𝑏𝑙𝑜𝑐𝑘 do 
8     𝐴𝐷𝐷  (&𝑁𝑒𝑤Pr 𝑒𝑑𝑔𝑒. 𝑑𝑒𝑠𝑡 ,

Pr [𝑒𝑑𝑔𝑒 .𝑠𝑜𝑢𝑟𝑐𝑒 ]

𝐷𝑒𝑔 [𝑒𝑑𝑔𝑒 .𝑠𝑜𝑢𝑟𝑐𝑒 ]
) 

9  end for 
10  for each 𝑉𝑒𝑟𝑡𝑒𝑥  ∈  𝑉  do 
11
21 

      𝑁𝑒𝑤𝑃𝑟[𝑣] ← 0.15 + 0.85 × 𝑁𝑒𝑤𝑃𝑟[𝑣] 
     diff = |𝑁𝑒𝑤𝑃𝑟 𝑣 − Pr[𝑣]| 

13  end for      
14  Swap (PR, NewPR) 
15   Converged = 

𝑫𝒊𝒇𝒇

|𝒗|
≤ 𝜺   

16    End While 
  

 

HLS Kernels 

and 

Functions

Xiaowei Zhu, Wentao Han, and Wenguang Chen. “GridGraph: Large-Scale Graph Processing on a Single Machine Using 2-Level Hierarchical Partitioning”, 2015.

Larry Page and Sergey Brin and R. Motwani and T. Winograd, “The PageRank Citation Ranking: Bringing Order to the Web”, 1998.
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The Evaluation Setup and the datasets  

The XACC Xilinx server used to evaluate the real implementation

The Alveo U250 resource utilization in this experiment

21

Dataset of the experiments
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The Evaluation Results 

22

1
.8

7
.6

3

5
.1

2

0
.3

4

9
.7

2

0

2

4

6

8

10

12

O PE N M P G R ID G R APH C U G R A PH V I T IS  L IB O U R  W O R K

G PU FPG A

SP
EE

D
U

P

LIVEJOURNAL

1
.2

9

8
.5

3

3
.0

4

1
3

.3
7

0

2

4

6

8

10

12

14

16

OPE N M P G RID G R A PH C UG R APH V IT IS  L IB O UR  W O R K

G PU FPG A

SP
EE

D
U

P

WEB-UK-2005

1
.7

8

1
1

.7
8

2
5

.9
5

0

5

10

15

20

25

30

O PE N M P G R ID G R APH C U G R A PH V I T IS  L IB O U R  W O R K

G PU FPG A

SP
EE

D
U

P

TWITTER

2
.3

8

1
6

.0
1

2
3

.6
7

0

5

10

15

20

25

OPE N M P G RID G R A PH C UG R APH V IT IS  L IB O UR  W O R K

G PU FPG A

SP
EE

D
U

P

FRIENDSTER

● Speedup evaluation of a single FPGA 
implementation against sequential 
CPU execution

● CPU comparison with OpenMP and 
GridGraph

● GPU comparison with cuGraph

● FPGA comparison with the PageRank 
algorithm available in the AMD/Xilinx 
Vitis Library

[1] Sahebi, A., Barbone, M., Procaccini, M., Luk, W., Gaydadjiev, G., & Giorgi, R. (2023). Distributed large-scale graph processing on FPGAs. Journal of Big Data, 10(1), 1-28.
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[1] Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Commun ACM. 2008;51(1):107–13.
[2] Karloff H, Suri S, Vassilvitskii S. A model of computation for mapreduce. In: Proceedings of the twenty-first annual ACM-SIAM symposium on discrete 
algorithms. SIAM, ACM: Austin; 2010. p. 938–948. 

Hadoop Performance Model

23

• The Hadoop framework has been extensively studied in the literature, and its performance is 

modelled and predictable [1,2]

• We forecast the performance by leveraging performance model already available [1,2] due to the 

lack of an Hadoop cluster equipped with FPGAs



Accelerating Large-Scale Graph-Processing with FPGA-Based Distributed Computing

Hadoop Performance Model Evaluation
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• Assumption that most of the time is spent in the mapping phase

• The performance model has been tuned with the results obtained in the single FPGA evaluation
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Lesson Learned and Future Direction 

1) Distributed computation across multicore+multifpga clusters is a promising platform to process large-scale graphs

2) Appropriate partitioning and block-scheduling may be needed to achieve a better load balance, mostly when 
unbalanced graphs are used (i.e., “natural graphs”)

3) Memory access patterns to process large-graphs may easily downgrade the performance (i.e., cache pollution)

4) The Host-FPGA communication overhead must be deeply evaluated to find further improvements. 

5) The parallelism of the Hardware Model can be further improved

6) The model must be evaluated with a more comprehensive benchmark set
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Please refer to this paper regarding this work: https://doi.org/10.1186/s40537-023-00756-x
Sahebi, A., Barbone, M., Procaccini, M., Luk, W., Gaydadjiev, G., & Giorgi, R. (2023).
Distributed large-scale graph processing on FPGAs. Journal of Big Data, 10(1), 1-28.

https://doi.org/10.1186/s40537-023-00756-x


Thank you for you attention! ☺
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