

Accelerator-driven Data Arrangement to Minimize Transformers Run-time on Multi-core Architectures

Alireza Amirshahi, Giovanni Ansaloni, David Atienza Embedded Systems Laboratory, EPFL, Switzerland

Applications of transformers

Input: "A Ph.D. student is talking at a conference on the planet of Mars in the year 2124."

Text Generation:

The year is 2124, and humanity has made incredible strides in space exploration, establishing a presence on Mars. The conference is being held in one of the advanced research facilities

[1] A. Ramesh et al. ArXiv 2022

Problem definition

[2] A. Gholami et al. Riselab medium post 2021

Need for GEMM <u>accelerators</u> and <u>memory management</u> for transformers

GEMM accelerators

EPFL

Transformer acceleration

Tiling in GEMM operations

- Matrices are typically larger than the accelerator size
- Matrices must be tiled \rightarrow One tile processed at a time
- Partial results are aggregated with element-wise additions.

Aligning memory arrangement with the accelerator

Block-Wise Memory Arrangement (BWMA)

BWMA for GEMM operations

Consider that 97% of the transformer runtime is GEMM

BWMA for non-GEMM operations

- Non-GEMM functions in a transformer model
 - Activation -> element-wise
 - Transpose
 - Softmax
 - Normalization
- Only 3% of the whole transformer runtime
- Negligible overhead in BWMA w.r.t RWMA

Configurations: Full system simulation

System simulated in gem5-X [4]:

CPU Core	Single- or multi-core in-order CPU @ 2.3 GHz
L1/L2 Cache Size	L1-Instruction: 32 KB, L1-Data: 32 KB, L2: 1 MB
Instruction Set Architecture (ISA)	ARMv8 (AArch64)
Main Memory	4 GB DDR4 @ 2400 MHz
Operating System	Ubuntu 16.04 LTS
Accelerators	SA 16x16 / SA 8x8 / SIMD 16

[4] Y. Qureshi et al., HPC 2019

Configurations: Application

Application: BERT-base [5]

Sequence Length	512
Model Dimension	768
Feed-forward Dimension	3072
Number of Heads	12
Total Number of Parameters	110M

Impact on memory accesses

Impact of BWMA on inference run-time

Single-core system with different accelerators

• Up to 2.7x speed up

Multi-core systems with SA16x16 accelerators

• BWMA is more effective than duplicating number of cores and accelerators.

Conclusion

- Aligning memory arrangements with accelerator size is key.
- Up to 2.7X speed up across different accelerator architectures
- Code available : https://github.com/gem5-X/TiC-SAT

Thank you!

