Institut fur Technik der

é ! (I I Informationsverarbeitung [J I\
_ Heads of the Institute
Karlsruhe Institute of Technology Prof. Dr.-Ing. Dr.h.c. J. Becker (Speaker)

Prof. Dr.-Ing. E. Sax
Prof. Dr. rer. nat. W. Stork

Embedded Multi-Core Code Generation
with Cross-Layer Parallelization

Oliver Oey

KIT — The Research University in the Helmholtz Association www.kit.edu

2

Overview

® Introduction
® Concept of Cross-Layer Parallelization
@ Algorithm layer
a Code layer
B Task layer
@ Data layer
® Evaluation with example
® Summary and Outlook

Oliver Oey
19.01.2024 Embedded Multi-Core Code Generation with Cross-Layer Parallelization

AT

Karlsruhe Institute of Technology

Institut fur Technik der Informationsverarbeitung (ITIV)

3

Introduction

¥

Algorithm

¥

Algorithm:

@ Mathematical procedure

® Process input data to generate
deterministic results

AT

Karlsruhe Institute of Technology

Embedded System:

® Computing system with limited
resources

® Heterogenous processing units
® Timing constraints

How can an algorithm be transferred to the embedded system as efficiently as possible?

Oliver Oey

19.01.2024 Embedded Multi-Core Code Generation with Cross-Layer Parallelization

Institut fur Technik der Informationsverarbeitung (ITIV)

AT

Requirements

® Algorithm development independent of target platform

® Abstract representation on a mathematical level

@ Efficient utilization of execution units: CPU + Accelerators
® Automate time-consuming and error-prone decisions

Oliver Oey
4 19.01.2024 Embedded Multi-Core Code Generation with Cross-Layer Parallelization Institut fir Technik der Informationsverarbeitung (ITIV)

Layered Approach ﬂ(".

From abstract representation to hardware

® Algorithm Layer ® Task Layer
® Optimization or implementation for @ Coarse grain parallelization
known algorithms/functions ® Assignment of tasks to processing
® Typically implemented as libraries elements (PE)
@ Code Layer ® Data Layer
® Representation of algorithm in source ® Data exchange between PEs
code m Efficient use of shared memory or
® Transformations and special code Interconnects

optimized for target platform

Oliver Oey
January 19, 2024 Embedded Multi-Core Code Generation with Cross-Layer Parallelization Institut fir Technik der Informationsverarbeitung (ITIV)

6

Concept of Cross-Layer Parallelization A\‘(IT

m Layers allow different kinds of optimizations
a Abstract: general execution of the algorithm
m Hardware-related: specific adaptations to the target platform
m Optimizations on one layer affect the optimization potential of following layers

a Optimization potential per layer also depends on characteristics of algorithm
s Data flow
a Control flow
m Issue size

- To achieve the best performance, parallelization needs to take into account all
layers and the characteristics of the input algorithm

Oliver Oey
19.01.2024 Embedded Multi-Core Code Generation with Cross-Layer Parallelization Institut fir Technik der Informationsverarbeitung (ITIV)

Workflow ﬂ(“.

Karlsruhe Institute of Technology

Implementation Conversion from Transformation and

of algorithm MATLAB to C code parallelization of C code -
emmtrix emmtrix 4 53 Compiler

Vs = e EEED ol Ly

m | Generic C

-

« Code Layer

» Algorithm layer
 Code Layer

 Task Layer
« Data Layer

® Reference implementation of flow: manual steps assisted by existing tools

® MATLAB: realization of algorithm without hardware-awareness. No data
types required. Simple development with runtime interpreter

® C: close to hardware with low-level optimization potential

Oliver Oey

19.01.2024 Embedded Multi-Core Code Generation with Cross-Layer Parallelization

Institut fur Technik der Informationsverarbeitung (ITIV)

Example: Streak Detection Algorithm KT

Karlsruhe Institute of Technology

Canny Edge Detection Hough Transform

function [pointlArrays,point2Arrays] = streak detection(img)
sconvert to grayscale, available in MATLAB
gray = rgb2gray(img);
sextract edges from image, available in MATLAB
[E,thresh] = edge(double(gray), Canny"');
%apply Hough transform, available in MATLAB
[H,T,R] = hough(E);
%extract peaks in Hough representation, available in MATLAB
P = houghpeaks(H,);
%draw a line to connect points, implemented manually
[pointlArrays,point2Arrays] = custom_houghlines(E,T,R,P);
end

® Implemented in MATLAB, mostly with inbuilt functions

® No hardware-related implementations

® Image processing — dominated by processing of large data arrays

Oliver Oey
January 19, 2024 Embedded Multi-Core Code Generation with Cross-Layer Parallelization Institut fir Technik der Informationsverarbeitung (ITIV)

9

Algorithm Layer SIT

Karlsruhe Institute of Technology

® Goal: detect algorithms and provide different realizations. Examples:
8 A 1024 point FFT can be replace by 2 with 512 points - good for 2 cores
@ Sorting algorithm: same results, different memory requirements, parallel parts

N/2 Point

I FFT I
N/2 Point

FFT

re 2

. N Point ‘
4\ MATLAB as input: FFT
® clear specification of inbuilt functions
® No complex detection required = usage clear
a Different implementations can be used during MATLAB to C conversion
B Streak detection example:

® rgb2gray and hough: processing of big data arrays.
® Versions optimized for specified numbers of cores
® Different accuracy of used data types
® Edge: Canny works on X and Y direction, can be processed independently

Oliver Oey
January 19, 2024 Embedded Multi-Core Code Generation with Cross-Layer Parallelization Institut fir Technik der Informationsverarbeitung (ITIV)

Code Layer

® Goal: prepare source code for different
processing elements. Same functionality,
different representation in code. Examples:
® Loops: data-driven algorithms typically use many
loops. Code transformations (tiling, fission,

unrolling) can be used to prepare for parallel
execution or usage of accelerators

@ Data accesses: insert streaming buffer or move
to shared/local memory

® Streak detection example:

® Convolution in edge: each direction can further
be split into independent parts

Oliver Oey

January 19, 2024 Embedded Multi-Core Code Generation with Cross-Layer Parallelization

AT

Karlsruhe Institute of Technology

void conv(double B_@ data[103711,
double B_1 data[10 1,
double k_data[13]) {

for (il11 = 1; i11 < 5 111 = i11 + 1) {
for (il12 = 1; i12 < 5 112 = i12 + 1) {
sum2_data = H
for (il13 = 1; i13 < 143 i13 = i13 + 1) {
sum2_data = sum2_data + chain2 data;

}
B _© data[il2 - 1][il1l1 - 1] = sum2_data;

}
for (i6 = ;5 i6 < ; i6 = i6 + 1) {
for (i7 = 1; 17 < 5 17 =17 + 1) {
sum_data =

for (i8 = 1; i8 < 14; i8 = i8 + 1) {
sum_data = sum_data + chainl data;

}
B_1 data[i7 - 1][i6 -] = sum _data;

Institut fur Technik der Informationsverarbeitung (ITIV)

Task Layer ﬂ(".

Karlsruhe Institute of Technology

B Goal: Mapping and scheduling of tasks to processing elements (PE)
u Performance model required to get runtime of task on PE
® Overhead cost for data transfer/synchronization 3¢ %

8 Detect independent parts in the code core2
® Modelled as optimization algorithm: _ —
minimize runtime with parallel L

execution and low communication overhead

® Here:
® Heterogeneous Earliest Finish Time (HEFT) algorithm
B Tasks are assigned a rank depending on (data) dependencies and execution time
® Heuristic: Tasks with low rank are scheduled first on available core

Oliver Oey
1" January 19, 2024 Embedded Multi-Core Code Generation with Cross-Layer Parallelization Institut fir Technik der Informationsverarbeitung (ITIV)

Data Layer ﬁ(".

Karlsruhe Institute of Technology

® Goal: Data availability on the individual cores
® [nsertion of communication and synchronization to ensure correct execution
® Minimize runtime

® Avoid deadlocks and data races —H
- o/

® Determine synchronization points ’

® Memory allocation on the cores "_

® Hardware dictates optimization potential
® Shared memory: low overhead, placement can reduce waiting times
® DMA: data transfer parallel to calculation

@ Availability of special instructions, e.g. circular addressing mode allows
efficient use of ring buffers

Oliver Oey
12 January 19, 2024 Embedded Multi-Core Code Generation with Cross-Layer Parallelization Institut fir Technik der Informationsverarbeitung (ITIV)

Interactions Between Layers ﬂ(".

Hardware Specification

Number Processing Communications. Communication
of Cores Type Cost Model

MATI} Algorithm
Layer

B [terative approach: later layers set options from previous layers. Layers
are processed from left to right with refinement steps back

@ AL: CL requests implementation for certain number of cores

®m CL: TL and DL provide feedback on actual number of independent tasks
required so that communication is not the bottleneck

B TL: Feedback from DL is used to determine number of parallel tasks

Oliver Oey
13 January 19, 2024 Embedded Multi-Core Code Generation with Cross-Layer Parallelization Institut fir Technik der Informationsverarbeitung (ITIV)

AT

Results for Streak Detection |

® Hardware platform: NXP P4080 DS with 8 PowerPC e€500mc cores

® Algorithm layer:
® Standard procedure for edge detection: Use of optimized Canny algorithm
® Optimized thresholds: -6%
® Simple accuracy: -28%
® Optimized memory initialization: -19%
® - In total: ~61% reduction in runtime
® Code layer:
@ Canny can be optimized for threads via loop transformations
® X andY direction can be executed in parallel
® Each direction can be split into 8 cores
® Canny takes 2/3 of the overall runtime, this change: +5% for sequential
execution

Oliver Oey

14 19.01.2024 Embedded Multi-Core Code Generation with Cross-Layer Parallelization Institut fur Technik der Informationsverarbeitung (ITIV)

Results for Streak Detection i A\‘(IT

® Task layer:
@ Canny for 8 cores: Speedup of 6.28 achievable

@ Smaller functions such as RGB2Gray, hough and hough_peak can be
accelerated with 8 cores, but speedup < 2

® Data layer:
® Communication overhead relatively large
® Optimization leads to ~ -19% runtime

® Overall: Preparations on AL and CL were vital to achieve speedup on TL
@ Final speedup: 2.86 for complete algorithm compared to sequential execution

Oliver Oey
15 19.01.2024 Embedded Multi-Core Code Generation with Cross-Layer Parallelization Institut fir Technik der Informationsverarbeitung (ITIV)

16

Final Schedule of Streak Detection Algorithm

AT

Karlsruhe Institute of Technology

edge detectionin edge detectionin Hough Hough
rgbZTV X dirTction Y dirTction transform }aks
BPC 6500me 0 I|||FoCaI 7 2 detection‘ko Folcally” ¥l detection‘io ﬂllml& If1 (Call3 (#2999) [Call6 (#3025F{Ford }, br12 (#3687) |IIF Call5 (#4591) Ca
in X direction — in Y direction | J o
PPC e500mc #1 i EI
i g g
— - h h
PPC e500mc #2 q
| - B P
PPC e500mc #3 - e
i I
PPC e500mc #4 Cal FoiCa) k
L S
PPC e500mc #5 J
PPC e500mc #6 J
PPC e500mc #7 j
T0ns [100.000.000 ns [200.000.000 ns [300.000.000 ns |400.000.000 ns 1500.000.000 ns 1600.000.000 ns |700.000.000 ns [800.000.000 ns 900.0¢
Oliver Oey

19.01.2024

Embedded Multi-Core Code Generation with Cross-Layer Parallelization

Institut fur Technik der Informationsverarbeitung (ITIV)

Example for Control Flow Driven Algorithm A\‘(IT

FoFor3 (#9635) For11 (#11357) For13 BEFJFolFor2 (#5832) Ca[BEAT[TATAATH For3 (#
Tricore #0
For|[For3 (#9698) AFor3 (#9321) [calln4 (|[For]ForF| [FIFdcd[FJIAT ENNEE! IERIIEIE!
m 1
Fdrd FFors #11333) [Block[CallFor1]BIc]FdFordBIiF]] calis #dl[cate {licair C M i
Tricore #2
0ns [20.000 ns 140.000 ns [60.000 ns 80.000 ns [100.000 ns [120.000 ns 1140.000 ns [160.000 ns 1180.000 ns | El

® Characteristics
@ Many short tasks (~1400)
u Lots of conditions that lead to decisions
a Only few loops for data processing
® Time to synchronize data is in the range of the runtime of a single task
@ Key insight: AL not that important, CL important to cluster short tasks (= reduce
communication), then the assignment on TL can be handled efficiently

® Achieved speedup: 1.4 on an Infineon AURIX TC297 with 3 cores

Oliver Oey
17 January 19, 2024 Embedded Multi-Core Code Generation with Cross-Layer Parallelization Institut fir Technik der Informationsverarbeitung (ITIV)

18

Summary and Outlook A\‘(IT

® Cross-layer parallelization across 4 abstraction layers
m Later layers are used to iteratively refine decisions from previous layers

® Based on the characteristics of the input algorithms, certain layers are more
important than others to achieve best efficiency

® Reference implementation shows promising results for data-driven and
control-flow-driven algorithms

® More automation potential: automated decision making and interactions
between layers

® Methodology is also applicable to FPGA, GPU and other accelerators flow
® Optimizations can also be used to reduce power consumption

Oliver Oey
19.01.2024 Embedded Multi-Core Code Generation with Cross-Layer Parallelization Institut fir Technik der Informationsverarbeitung (ITIV)

Any Questions? ﬂ(".

Karlsruhe Institute of Technology

Contact: oliver.oey@emmtrix.com

(
¢

Oliver Oey
19 19.01.2024 Embedded Multi-Core Code Generation with Cross-Layer Parallelization Institut fur Technik der Informationsverarbeitung (ITIV)

mailto:oliver.oey@emmtrix.com

	Folie 1
	Folie 2: Overview
	Folie 3: Introduction
	Folie 4: Requirements
	Folie 5: Layered Approach
	Folie 6: Concept of Cross-Layer Parallelization
	Folie 7: Workflow
	Folie 8: Example: Streak Detection Algorithm
	Folie 9: Algorithm Layer
	Folie 10: Code Layer
	Folie 11: Task Layer
	Folie 12: Data Layer
	Folie 13: Interactions Between Layers
	Folie 14: Results for Streak Detection I
	Folie 15: Results for Streak Detection II
	Folie 16: Final Schedule of Streak Detection Algorithm
	Folie 17: Example for Control Flow Driven Algorithm
	Folie 18: Summary and Outlook
	Folie 19: Any Questions?

