
KIT – The Research University in the Helmholtz Association www.kit.edu

Embedded Multi-Core Code Generation
with Cross-Layer Parallelization

Oliver Oey

Heads of the Institute

Prof. Dr.-Ing. Dr.h.c. J. Becker (Speaker)

Prof. Dr.-Ing. E. Sax

Prof. Dr. rer. nat. W. Stork

Institut für Technik der

Informationsverarbeitung

Oliver Oey

Embedded Multi-Core Code Generation with Cross-Layer Parallelization Institut für Technik der Informationsverarbeitung (ITIV)

Introduction

Concept of Cross-Layer Parallelization

Algorithm layer

Code layer

Task layer

Data layer

Evaluation with example

Summary and Outlook

19.01.20242

Overview

Oliver Oey

Embedded Multi-Core Code Generation with Cross-Layer Parallelization Institut für Technik der Informationsverarbeitung (ITIV)

Algorithm:

Mathematical procedure

Process input data to generate
deterministic results

19.01.20243

Introduction

?

How can an algorithm be transferred to the embedded system as efficiently as possible?

Embedded System:

Computing system with limited
resources

Heterogenous processing units

Timing constraints

Input

Output

Algorithm

Oliver Oey

Embedded Multi-Core Code Generation with Cross-Layer Parallelization Institut für Technik der Informationsverarbeitung (ITIV)

Algorithm development independent of target platform

Abstract representation on a mathematical level

Efficient utilization of execution units: CPU + Accelerators

Automate time-consuming and error-prone decisions

19.01.20244

Requirements

Oliver Oey

Embedded Multi-Core Code Generation with Cross-Layer Parallelization Institut für Technik der Informationsverarbeitung (ITIV)

Algorithm Layer
Optimization or implementation for
known algorithms/functions

Typically implemented as libraries

Code Layer
Representation of algorithm in source
code

Transformations and special code
optimized for target platform

Task Layer
Coarse grain parallelization

Assignment of tasks to processing
elements (PE)

Data Layer
Data exchange between PEs

Efficient use of shared memory or
interconnects

January 19, 20245

Layered Approach

From abstract representation to hardware

Oliver Oey

Embedded Multi-Core Code Generation with Cross-Layer Parallelization Institut für Technik der Informationsverarbeitung (ITIV)

Layers allow different kinds of optimizations
Abstract: general execution of the algorithm

Hardware-related: specific adaptations to the target platform

Optimizations on one layer affect the optimization potential of following layers

Optimization potential per layer also depends on characteristics of algorithm
Data flow

Control flow

Issue size

→ To achieve the best performance, parallelization needs to take into account all
layers and the characteristics of the input algorithm

19.01.20246

Concept of Cross-Layer Parallelization

Oliver Oey

Embedded Multi-Core Code Generation with Cross-Layer Parallelization Institut für Technik der Informationsverarbeitung (ITIV)

Reference implementation of flow: manual steps assisted by existing tools
MATLAB: realization of algorithm without hardware-awareness. No data
types required. Simple development with runtime interpreter
C: close to hardware with low-level optimization potential

19.01.20247

Workflow

emmtrix
Code
Generator

emmtrix
Parallel
Studio

Implementation

of algorithm

Conversion from

MATLAB to C code

Transformation and

parallelization of C code

.m Generic C Optimized C

• Algorithm layer

• Code Layer
• Code Layer

• Task Layer

• Data Layer

C

Compiler

Oliver Oey

Embedded Multi-Core Code Generation with Cross-Layer Parallelization Institut für Technik der Informationsverarbeitung (ITIV)

Implemented in MATLAB, mostly with inbuilt functions
No hardware-related implementations
Image processing – dominated by processing of large data arrays

January 19, 20248

Example: Streak Detection Algorithm

function [point1Arrays,point2Arrays] = streak_detection(img)
%convert to grayscale, available in MATLAB
gray = rgb2gray(img);
%extract edges from image, available in MATLAB
[E,thresh] = edge(double(gray),'Canny');
%apply Hough transform, available in MATLAB
[H,T,R] = hough(E);
%extract peaks in Hough representation, available in MATLAB
P = houghpeaks(H, 50);
%draw a line to connect points, implemented manually
[point1Arrays,point2Arrays] = custom_houghlines(E,T,R,P);

end

Canny Edge Detection

Smooth &
Edge Operator

Gradient
Non-Maximum

Suppression
Hysteresis
Threshold

Hough Transform

Hough Hough Peaks Hough Lines

Oliver Oey

Embedded Multi-Core Code Generation with Cross-Layer Parallelization Institut für Technik der Informationsverarbeitung (ITIV)

Goal: detect algorithms and provide different realizations. Examples:
A 1024 point FFT can be replace by 2 with 512 points → good for 2 cores
Sorting algorithm: same results, different memory requirements, parallel parts

MATLAB as input:
clear specification of inbuilt functions
No complex detection required → usage clear
Different implementations can be used during MATLAB to C conversion

Streak detection example:
rgb2gray and hough: processing of big data arrays.

Versions optimized for specified numbers of cores
Different accuracy of used data types

Edge: Canny works on X and Y direction, can be processed independently

January 19, 20249

Algorithm Layer

Oliver Oey

Embedded Multi-Core Code Generation with Cross-Layer Parallelization Institut für Technik der Informationsverarbeitung (ITIV)

Goal: prepare source code for different
processing elements. Same functionality,
different representation in code. Examples:

Loops: data-driven algorithms typically use many
loops. Code transformations (tiling, fission,
unrolling) can be used to prepare for parallel
execution or usage of accelerators

Data accesses: insert streaming buffer or move
to shared/local memory

Streak detection example:

Convolution in edge: each direction can further
be split into independent parts

January 19, 202410

Code Layer

void conv(double B_0_data[1018][371],
double B_1_data[1018][372],

double k_data[13]) {

for (i11 = 1; i11 < 372; i11 = i11 + 1) {
for (i12 = 1; i12 < 1019; i12 = i12 + 1) {

sum2_data = 0.0;
for (i13 = 1; i13 < 14; i13 = i13 + 1) {
sum2_data = sum2_data + chain2_data;

}
B_0_data[i12 - 1][i11 - 1] = sum2_data;

}
}

for (i6 = 372; i6 < 744; i6 = i6 + 1) {
for (i7 = 1; i7 < 1019; i7 = i7 + 1) {
sum_data = 0.0;
for (i8 = 1; i8 < 14; i8 = i8 + 1) {
sum_data = sum_data + chain1_data;

}
B_1_data[i7 - 1][i6 - 372] = sum_data;

}
}

}

Oliver Oey

Embedded Multi-Core Code Generation with Cross-Layer Parallelization Institut für Technik der Informationsverarbeitung (ITIV)

Goal: Mapping and scheduling of tasks to processing elements (PE)

Performance model required to get runtime of task on PE

Overhead cost for data transfer/synchronization

Detect independent parts in the code

Modelled as optimization algorithm:
minimize runtime with parallel
execution and low communication overhead

Here:

Heterogeneous Earliest Finish Time (HEFT) algorithm

Tasks are assigned a rank depending on (data) dependencies and execution time

Heuristic: Tasks with low rank are scheduled first on available core

January 19, 202411

Task Layer

Oliver Oey

Embedded Multi-Core Code Generation with Cross-Layer Parallelization Institut für Technik der Informationsverarbeitung (ITIV)

Goal: Data availability on the individual cores
Insertion of communication and synchronization to ensure correct execution
Minimize runtime
Avoid deadlocks and data races
Determine synchronization points
Memory allocation on the cores

Hardware dictates optimization potential
Shared memory: low overhead, placement can reduce waiting times
DMA: data transfer parallel to calculation
Availability of special instructions, e.g. circular addressing mode allows
efficient use of ring buffers

January 19, 202412

Data Layer

?

Oliver Oey

Embedded Multi-Core Code Generation with Cross-Layer Parallelization Institut für Technik der Informationsverarbeitung (ITIV)

Iterative approach: later layers set options from previous layers. Layers
are processed from left to right with refinement steps back

AL: CL requests implementation for certain number of cores

CL: TL and DL provide feedback on actual number of independent tasks
required so that communication is not the bottleneck

TL: Feedback from DL is used to determine number of parallel tasks

January 19, 202413

Interactions Between Layers

Oliver Oey

Embedded Multi-Core Code Generation with Cross-Layer Parallelization Institut für Technik der Informationsverarbeitung (ITIV)

Hardware platform: NXP P4080 DS with 8 PowerPC e500mc cores
Algorithm layer:

Standard procedure for edge detection: Use of optimized Canny algorithm
Optimized thresholds: -6%

Simple accuracy: -28%

Optimized memory initialization: -19%

→ In total: ~61% reduction in runtime

Code layer:
Canny can be optimized for threads via loop transformations

X and Y direction can be executed in parallel

Each direction can be split into 8 cores

Canny takes 2/3 of the overall runtime, this change: +5% for sequential
execution

19.01.202414

Results for Streak Detection I

Oliver Oey

Embedded Multi-Core Code Generation with Cross-Layer Parallelization Institut für Technik der Informationsverarbeitung (ITIV)

Task layer:

Canny for 8 cores: Speedup of 6.28 achievable

Smaller functions such as RGB2Gray, hough and hough_peak can be
accelerated with 8 cores, but speedup < 2

Data layer:

Communication overhead relatively large

Optimization leads to ~ -19% runtime

Overall: Preparations on AL and CL were vital to achieve speedup on TL

Final speedup: 2.86 for complete algorithm compared to sequential execution

19.01.202415

Results for Streak Detection II

Oliver Oey

Embedded Multi-Core Code Generation with Cross-Layer Parallelization Institut für Technik der Informationsverarbeitung (ITIV)19.01.202416

Final Schedule of Streak Detection Algorithm

Oliver Oey

Embedded Multi-Core Code Generation with Cross-Layer Parallelization Institut für Technik der Informationsverarbeitung (ITIV)

Characteristics
Many short tasks (~1400)
Lots of conditions that lead to decisions
Only few loops for data processing
Time to synchronize data is in the range of the runtime of a single task

Key insight: AL not that important, CL important to cluster short tasks (→ reduce
communication), then the assignment on TL can be handled efficiently
Achieved speedup: 1.4 on an Infineon AURIX TC297 with 3 cores

January 19, 202417

Example for Control Flow Driven Algorithm

Oliver Oey

Embedded Multi-Core Code Generation with Cross-Layer Parallelization Institut für Technik der Informationsverarbeitung (ITIV)

Cross-layer parallelization across 4 abstraction layers

Later layers are used to iteratively refine decisions from previous layers

Based on the characteristics of the input algorithms, certain layers are more
important than others to achieve best efficiency

Reference implementation shows promising results for data-driven and
control-flow-driven algorithms

More automation potential: automated decision making and interactions
between layers

Methodology is also applicable to FPGA, GPU and other accelerators flow

Optimizations can also be used to reduce power consumption

19.01.202418

Summary and Outlook

Oliver Oey

Embedded Multi-Core Code Generation with Cross-Layer Parallelization Institut für Technik der Informationsverarbeitung (ITIV)

Contact: oliver.oey@emmtrix.com

19.01.202419

Any Questions?

mailto:oliver.oey@emmtrix.com

	Folie 1
	Folie 2: Overview
	Folie 3: Introduction
	Folie 4: Requirements
	Folie 5: Layered Approach
	Folie 6: Concept of Cross-Layer Parallelization
	Folie 7: Workflow
	Folie 8: Example: Streak Detection Algorithm
	Folie 9: Algorithm Layer
	Folie 10: Code Layer
	Folie 11: Task Layer
	Folie 12: Data Layer
	Folie 13: Interactions Between Layers
	Folie 14: Results for Streak Detection I
	Folie 15: Results for Streak Detection II
	Folie 16: Final Schedule of Streak Detection Algorithm
	Folie 17: Example for Control Flow Driven Algorithm
	Folie 18: Summary and Outlook
	Folie 19: Any Questions?

