
Michael O’Boyle
Senior EPSRC Research Fellow

Rethinking how we build compilers in a heterogeneous world

Michael O’Boyle
Senior EPSRC Research Fellow

Rethinking how we build compilers in a heterogeneous world
(or stealing ideas from other domains for our purposes)

Michael O’Boyle
Senior EPSRC Research Fellow

Rethinking how we build compilers in a heterogeneous world
(or stealing ideas from other domains for our purposes)

(or trying to make myself redundant with ML + endless automation)

Rethinking how we build compilers in a heterogeneous world

Philip Ginsbach Bruce Collie Jackson Woodruff Jordi Armengol Estape

https://uk.linkedin.com/in/jordiae

Well known things

My view

Concrete results

Can we go further ?

Summary

Well known things

My view

Concrete results

Can we go further ?

Summary

 50 years of Moore’s Law
 - Enabled the digital age
 - Basis for software investment and growth

Rethinking the Hardware/Software ContractDigital age based on a 50 year contract

Hardware

Contract: Hardware may change “under the hood”

Rethinking the Hardware/Software Contract

Hardware

Software

 Hardware/Software Interface remains constant

Contract: Hardware may change “under the hood”
BUT

Digital age based on a 50 year contract

Rethinking the Hardware/Software Contract

Hardware

Software

 Hardware/Software Interface remains constant

Contract: Hardware may change “under the hood”
BUT

Software written today guaranteed to run tomorrow

Digital age based on a 50 year contract

Moore’sLaw is coming to an end
Hardware/Software contract breaking down

Rethinking the Hardware/Software Contract

?

Hardware/software contract breaking down

Technology trends means
- Hardware specialised or heterogenous

Rethinking the Hardware/Software Contract

?

Hardware/software contract breaking down

Technology trends means
- Hardware specialised or heterogenous

Great
- up to 100,000x performance/energy gains

Rethinking the Hardware/Software Contract

?

Hardware/software contract breaking down

Technology trends means
- Hardware specialised or heterogenous

Great
- up to 100,000x performance/energy gains

No free lunch
- Software cannot fit on new hardware

Heterogeneous crisis
- hardware stalls as software cannot fit

Rethinking the Hardware/Software Contract

Technology trends means
- Hardware specialised or heterogenous

Great
- up to 100,000x performance/energy gains

Heterogeneous crisis
- hardware stalls as software cannot fit

No free lunch
- Software cannot fit on new hardware

?

Hardware/software contract breaking down

Rethink the contract

Not the first person to notice this

Well known things

My view

Concrete results

Can we go further ?

Summary

New Application/Legacy Code

Adapting to ChangeHow to bridge the gap?

New Application/Legacy Code

Adapting to ChangeLanguage Approach

Parallel Language

New Application/Legacy Code

Adapting to Change

Parallel Language

User rewrites

Write new
compiler

Language Approach

New Application/Legacy Code

Adapting to Change

Parallel Language

A universal parallel language
 + opt compiler per ISA/platform + smart runtime/glue?

User rewrites

Write new
compiler

Language Approach

New Application/Legacy Code

Adapting to ChangeDSL approach

DSL DSL DSL DSL

New Application/Legacy Code

Adapting to Change

DSL DSL DSL DSL

DSL approach

New Application/Legacy Code

Adapting to Change

DSL

Many specialised languages
 + rewrite and hope it works on your (next) machine?

DSL DSL DSL

DSL approach

Good performance is hard to get even with
well defined parallel language CUDA/OpenCL

Good performance is hard to get even with
well defined parallel language CUDA/OpenCL

Rather than building a new optimising compiler for each platform

Rather than building a new optimising compiler for each platform

Pick the best Library/API/DSL and FIT the code to it

pthreads multi C OpenCL bitfile
29

Adapting to Change

Legacy Program

30

Adapting to Change

pthreads multi C OpenCL bitfile

Legacy Program

31

Adapting to Change

pthreads multi C OpenCL bitfile

Legacy Program

32

Adapting to Change

Polly TBB
BLAS

Milk
Halide

PolyACC Lift
OpenGL

fir fft

Legacy Program

DSL/ Library/ API

33

Adapting to Change

Polly TBB
BLAS

Milk
Halide

PolyACC Lift
OpenGL

fir fft

Legacy Program

DSL/ Library/ API

Program x86 Hardware

Program x86 Hardware

Program OpenCL Hardware

Program x86 Hardware

Program OpenCL Hardware

Program clBLAS
Halide Hardware

Program clBLAS HardwareHalide

 + Target nearer to algorithm
 + Target willl always perform well

Program clBLAS HardwareHalide

 + Target nearer to algorithm
 + Target willl always perform well
 - Target complex and changeable

Program clBLAS HardwareHalide

 + Target nearer to algorithm
 + Target willl always perform well
 - Target complex and changeable

Constant change means any solution must work for any API, any DSL
Need to automate

Program clBLAS HardwareHalide

 + Target nearer to algorithm
 + Target willl always perform well
 - Target complex and changeable
 - Target may be at higher level

Program Hardware

APIS DSLsRather than compile code to hardware

By lowering code for each language and each ISA

Program

clBLAS Halide

Hardware

APIS DSLsInstead LIFT code to API or DSL

Program

clBLAS Halide

Hardware

APIS DSLsLIFT code to API or DSL

Vendor responsibility to map API/DSL to hardware - already the case

Our job - automatically lift it to API/DSL enabling hardware utilisation

Program

clBLAS Halide

Hardware

APIS DSLsLIFT code to API or DSL

How is API/DSL described?
How is matching code discovered?
How is code replaced/translated?

Well known things

My view

Concrete results

Can we go further ?

Summary

5 approaches

Search using constraints over LLVM IR: IDL+CanDL [18-20]
- targetted APIs in C/Fortran - dense/sparse linear algebra

Black-box Program Synthesis [19-21]
- eliminated need for writing constraints

API matching via IO behavioural equivalence [21-23]
- more robust detection

Program Lifting [22-?]
- beyond APIs lifting to DSLs/MLIR

Neural Compilation [21-?]
- language to assembler translation using NMT/transformer

5 approaches to lifting

5 approaches

Search using constraints over LLVM IR: IDL+CanDL [18-20]
- targetted APIs in C/Fortran - dense/sparse linear algebra

Black-box Program Synthesis [19-21]
- eliminated need for writing constraints

API matching via IO behavioural equivalence [21-23]
- more robust detection

Program Lifting [22-?]
- beyond APIs lifting to DSLs/MLIR

Neural Compilation [21-?]
- language to assembler translation using NMT/transformer

5 approaches to lifting

Libraries and DSLs are the new APIs

Program Idiom
 Description

Constraint
LLVM

Detect code structures that match interface

Match API
to Software

CC ’20, February 22–23, 2020, San Diego, CA, USA Philip Ginsbach, Bruce Collie, and Michael F. P. O’Boyle

Portable Source Code Optimized Compiler IR

Platform Specific Source Code

→

Application Binary≈

↓
LiLAC-compiler

(cf. Figure 2)

↓

W
h
a
t

H
o
w →

Generated Harness Code

↔ Harness Binary Intel MKL

↓

for (cgit = 1; cgit <= cgitmax; cgit++) {
 for (j = 0; j < lastrow - firstrow + 1; j++) {
 sum = 0.0;
 for (k = rowstr[j]; k < rowstr[j+1]; k++) {
 sum = sum + a[k]*p[colidx[k]];
 }
 q[j] = sum;
 }
 d = 0.0;
 for (j = 0; j < lastcol - firstcol + 1; j++) {
 d = d + p[j]*q[j];
}

for (cgit = 1; cgit <= cgitmax; cgit++) {
 spmv_csr_harness(lastrow - firstrow + 1,
 rowstr, colidx, p, a, q);
 d = 0.0;
 for (j = 0; j < lastcol - firstcol + 1; j++) {
 d = d + p[j]*q[j];
}

#include "mkl.h"

// …
void spmv_csr_harness(int rows, int* ranges,
 int* indir, double* vector, double* matrix,
 double* output) {

 sparse_matrix_t A;
 // …

 struct matrix_descr C;
 C.type = SPARSE_MATRIX_TYPE_GENERAL;
 C.mode = SPARSE_FILL_MODE_LOWER;
 C.diag = SPARSE_DIAG_NON_UNIT;
 mkl_sparse_d_mv(SPARSE_OPERATION_NON_TRANSPOSE,
 1.0, A, D, vector, 0.0, output);
}

↔

1

2

3

5

6

4 87

Figure 1. LiLAC applied to NPB Conjugate Gradient: Code (1) that matches the LiLAC-What speci�cation (cf. Figure 2) is
replaced by calls to a harness (5) during compilation (2), resulting in an application binary (6) that corresponds to (hypothetical)
platform-speci�c source code (4). The harness is generated from the LiLAC-How speci�cation (cf. Figure 2) to utilize Intel MKL.

LiLAC-What is a high-level language to describe sparse and
dense linear algebra computations. The LiLAC compiler uses
it to detect such functionality in user applications at compiler
intermediate representation level. It is powerful enough to
formulate linear algebra routines, yet remains independent
of compiler internals and is easy to understand and program.
LiLAC-How speci�es how libraries can be used to perform
a LiLAC-What-speci�ed computation. Besides generating
setup code and handling hardware context management, it
crucially enables e�cient memory synchronization. It uses
memory protection mechanisms to automatically track data
changes and transfers memory only when necessary.

The research contribution of this paper is a combination of
three techniques for the acceleration of sparse linear algebra:

• Accelerate unchanged source code by identifying sparse
linear algebra computations with backtracking search.

• Avoid vendor lock-in with an extensible speci�cation
language that adapts to new accelerator libraries.

• Achieve program-wide memory synchronization with
only local transformations using memory protection.

Together, these techniques result in a system that works on
existing and novel software. It o�ers the full performance
of fast libraries, avoids vendor lock-in, and keeps the source
code easy to maintain and free from pollution.

2 Overview
Figure 1 shows the LiLAC-enabled compiler from the user
perspective. In the top left corner (1), we see unmodi�ed
application source code. This is conjugate gradient from the
NAS-PB suite. To achieve good performance on Intel proces-
sors, the compiler (2) has been con�gured to o�oad native
sparse code to Intel MKL. Using a speci�cation ofWhat com-
putations MKL supports, it recognizes the highlighted loop

as a suitable sparse matrix-vector product. Instead of passing
it on to the compiler backend for code generation, it inserts a
call to a harness function. This is performed on intermediate
code (3) and results in a program (4). In the bottom left (5) is
an equivalent source-level representation.

LiLAC also generates the corresponding harness code (6),
which gets compiled into a shared library (7) that is linked
with the application binary. This harness interfaces with the
underlying library implementation, Intel MKL (8).

2.1 Implementation Overview
Figure 2 shows the internals of the LiLAC system. It is fully
integrated into the build system of the established LLVM
compiler framework, extending the clang compiler.

On the left is the LiLAC speci�cation - just 16 lines of code.
It is independent of the user application and can be provided
by the library implementer. It consists of a What and a How
part. These two parts are processed by the LiLAC system
and result in a runtime library and a generated detection
function, which is incorporated into the clang compiler.

LiLAC-What speci�es the functionality that is provided
by a library, in this example spmv-csr (cf. Figure 2). From this,
a function that detects the computation in normalized LLVM
IR code is generated and the harness interface is determined.
The detection functions are based on a backtracking search
algorithm, as elaborated in section 4. The detection function
is linked directly into the LiLAC-compiler, either statically
or dynamically at (compiler) run time.

LiLAC-How speci�es how the library, Intel MKL in this
case, is invoked to perform the speci�ed calculation. This
involves boilerplate code, but also advanced features. These
include e�cient data synchronization and the caching of
invariants. In the given example, the columns variable is
such an invariant. It is required for the library call, but not

180

CC ’20, February 22–23, 2020, San Diego, CA, USA Philip Ginsbach, Bruce Collie, and Michael F. P. O’Boyle

Portable Source Code Optimized Compiler IR

Platform Specific Source Code

→

Application Binary≈

↓
LiLAC-compiler

(cf. Figure 2)

↓

W
h
a
t

H
o
w →

Generated Harness Code

↔ Harness Binary Intel MKL

↓

for (cgit = 1; cgit <= cgitmax; cgit++) {
 for (j = 0; j < lastrow - firstrow + 1; j++) {
 sum = 0.0;
 for (k = rowstr[j]; k < rowstr[j+1]; k++) {
 sum = sum + a[k]*p[colidx[k]];
 }
 q[j] = sum;
 }
 d = 0.0;
 for (j = 0; j < lastcol - firstcol + 1; j++) {
 d = d + p[j]*q[j];
}

for (cgit = 1; cgit <= cgitmax; cgit++) {
 spmv_csr_harness(lastrow - firstrow + 1,
 rowstr, colidx, p, a, q);
 d = 0.0;
 for (j = 0; j < lastcol - firstcol + 1; j++) {
 d = d + p[j]*q[j];
}

#include "mkl.h"

// …
void spmv_csr_harness(int rows, int* ranges,
 int* indir, double* vector, double* matrix,
 double* output) {

 sparse_matrix_t A;
 // …

 struct matrix_descr C;
 C.type = SPARSE_MATRIX_TYPE_GENERAL;
 C.mode = SPARSE_FILL_MODE_LOWER;
 C.diag = SPARSE_DIAG_NON_UNIT;
 mkl_sparse_d_mv(SPARSE_OPERATION_NON_TRANSPOSE,
 1.0, A, D, vector, 0.0, output);
}

↔

1

2

3

5

6

4 87

Figure 1. LiLAC applied to NPB Conjugate Gradient: Code (1) that matches the LiLAC-What speci�cation (cf. Figure 2) is
replaced by calls to a harness (5) during compilation (2), resulting in an application binary (6) that corresponds to (hypothetical)
platform-speci�c source code (4). The harness is generated from the LiLAC-How speci�cation (cf. Figure 2) to utilize Intel MKL.

LiLAC-What is a high-level language to describe sparse and
dense linear algebra computations. The LiLAC compiler uses
it to detect such functionality in user applications at compiler
intermediate representation level. It is powerful enough to
formulate linear algebra routines, yet remains independent
of compiler internals and is easy to understand and program.
LiLAC-How speci�es how libraries can be used to perform
a LiLAC-What-speci�ed computation. Besides generating
setup code and handling hardware context management, it
crucially enables e�cient memory synchronization. It uses
memory protection mechanisms to automatically track data
changes and transfers memory only when necessary.

The research contribution of this paper is a combination of
three techniques for the acceleration of sparse linear algebra:

• Accelerate unchanged source code by identifying sparse
linear algebra computations with backtracking search.

• Avoid vendor lock-in with an extensible speci�cation
language that adapts to new accelerator libraries.

• Achieve program-wide memory synchronization with
only local transformations using memory protection.

Together, these techniques result in a system that works on
existing and novel software. It o�ers the full performance
of fast libraries, avoids vendor lock-in, and keeps the source
code easy to maintain and free from pollution.

2 Overview
Figure 1 shows the LiLAC-enabled compiler from the user
perspective. In the top left corner (1), we see unmodi�ed
application source code. This is conjugate gradient from the
NAS-PB suite. To achieve good performance on Intel proces-
sors, the compiler (2) has been con�gured to o�oad native
sparse code to Intel MKL. Using a speci�cation ofWhat com-
putations MKL supports, it recognizes the highlighted loop

as a suitable sparse matrix-vector product. Instead of passing
it on to the compiler backend for code generation, it inserts a
call to a harness function. This is performed on intermediate
code (3) and results in a program (4). In the bottom left (5) is
an equivalent source-level representation.

LiLAC also generates the corresponding harness code (6),
which gets compiled into a shared library (7) that is linked
with the application binary. This harness interfaces with the
underlying library implementation, Intel MKL (8).

2.1 Implementation Overview
Figure 2 shows the internals of the LiLAC system. It is fully
integrated into the build system of the established LLVM
compiler framework, extending the clang compiler.

On the left is the LiLAC speci�cation - just 16 lines of code.
It is independent of the user application and can be provided
by the library implementer. It consists of a What and a How
part. These two parts are processed by the LiLAC system
and result in a runtime library and a generated detection
function, which is incorporated into the clang compiler.

LiLAC-What speci�es the functionality that is provided
by a library, in this example spmv-csr (cf. Figure 2). From this,
a function that detects the computation in normalized LLVM
IR code is generated and the harness interface is determined.
The detection functions are based on a backtracking search
algorithm, as elaborated in section 4. The detection function
is linked directly into the LiLAC-compiler, either statically
or dynamically at (compiler) run time.

LiLAC-How speci�es how the library, Intel MKL in this
case, is invoked to perform the speci�ed calculation. This
involves boilerplate code, but also advanced features. These
include e�cient data synchronization and the caching of
invariants. In the given example, the columns variable is
such an invariant. It is required for the library call, but not

180

Constraint SESE
({precursor} is branch instruction and

{precursor} has control flow to {begin} and
{end} is branch instruction and
{end} has control flow to {successor} and
{begin} control flow dominates {end} and
{end} control flow post dominates {begin} and
{precursor} strictly control flow dominates

{begin} and
{successor} strictly control flow post dominates

{end} and
all control flow from {begin} to {precursor}

passes through {end} and
all control flow from {successor} to {end}

passes through {begin})
End

Figure 9. IDL speci�cation of SESE region

Constraint GEMM
(inherits ForNest(N=3) and

inherits MatrixStore
with {iterator[0]} as {col}
and {iterator[1]} as {row}
and {begin} as {begin} at {output} and

inherits MatrixRead
with {iterator[0]} as {col}
and {iterator[2]} as {row}
and {begin} as {begin} at {input1} and

inherits MatrixRead
with {iterator[1]} as {col}
and {iterator[2]} as {row}
and {begin} as {begin} at {input2} and

inherits DotProductLoop
with {loop[2]} as {loop}
and {input1.value} as {src1}
and {input2.value} as {src2}
and {output.address} as {update_address})

End

Figure 10. IDL speci�cation of GEMM

Constraint Histogram
(inherits For and

inherits ConditionalReadModifyWrite
with {indexkernel.output} as {address}
and {kernel.output} as {value} and

collect i
(inherits VectorRead

with {read_value[i]} as {value}
and {iterator} as {idx}
and {begin} as {begin} at {read[i]}) and

inherits Concat
with {read_value} as {in1}
and {old_value} as {in2}
and {kernel.input} as {out} and

inherits KernelFunction
with {begin} as {outer}
and {body.begin} as {inner} at {kernel} and

inherits KernelFunction
with {read_value} as {input}
and {begin} as {outer}
and {body.begin} as {inner} at {indexkernel})

End

Figure 11. IDL speci�cation of generalized histogram

Constraint SPMV
(inherits For and

inherits VectorStore
with {iterator} as {idx}
and {begin} as {begin} at {output} and

inherits ReadRange
with {iterator} as {idx}
and {inner.iter_begin} as {range_begin}
and {inner.iter_end} as {range_end} and

inherits For at {inner} and
inherits VectorRead

with {inner.iterator} as {idx}
and {begin} as {begin} at {idx_read} and

inherits VectorRead
with {idx_read.value} as {idx}
and {begin} as {begin} at {indir_read} and

inherits VectorRead
with {inner.iterator} as {idx}
and {begin} as {begin} at {seq_read} and

inherits DotProductLoop
with {inner} as {loop}
and {indir_read.value} as {src1}
and {seq_read.value} as {src2}
and {output.address} as {update_address})

End

Figure 12. IDL speci�cation of SPMV

Constraint Stencil
(inherits ForNest and

inherits PermMultidStore
with {iterator} as {input}
and {begin} as {begin} at {write} and

collect i
(inherits StencilRead

with {write.input_index} as {input}
and {kernel.input[i]} as {value}
and {begin} as {begin} at {reads[i]}) and

{kernel.output} is first argument of {write.store} and
inherits KernelFunction

with {begin} as {outer}
and {body.begin} as {inner} at {kernel})

End

Figure 13. IDL speci�cation of simple stencil

Constraint Reduction
(inherits For and

collect i
(inherits VectorRead

with {iterator} as {idx}
and {read_value[i]} as {value}
and {begin} as {begin} at {read[i]}) and

inherits InductionVar
with {old_value} as {old_ind}
and {kernel.output} as {new_ind} and

{old_value} is not the same as {iterator} and
inherits Concat

with {read_value} as {in1}
and {old_value} as {in2}
and {kernel.input} as {out} and

inherits KernelFunction
with {begin} as {outer}
and {body.begin} as {inner} at {kernel})

End

Figure 14. IDL speci�cation of scalar reductions

Session 2A: GPUs 1 ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

145

[CC20]

Speedup over sequential code 1.1x to 250x

Automatically finds and exploits parallel idioms

Speedup

[ASPLOS18]

CG EP IS MG histo lbm sgemm spmv stencil tpacf

CPU
iGPU

GPU
CPU

iGPU
GPU

CPU
iGPU

GPU
CPU

iGPU
GPU

CPU
iGPU

GPU
CPU

iGPU
GPU

CPU
iGPU

GPU
CPU

iGPU
GPU

CPU
iGPU

GPU
CPU

iGPU
GPU

 0

 1

 2

 0

 10

 20

 30

 0

 10

 20

 30

 40

 50

 0

 50

100

150

200

250

 0

 10

 20

 30

 0

 1

 0

 1

 2

 0

 1

 2

 3

 4

 0

 1

 0

 5

 10

 15

S
p
e
e
d
u
p
 v

s.
 S

e
q
u
e
n
tia

l

Figure 18. Speedup compared to the sequential C program. Results for the best performing heterogeneous API on each device
are shown. The red bars indicate a manual runtime optimization for avoiding unnecessary data transfers.

0.25 0.00 0.07 0.02

CG EP IS MG histo lbm sgemm spmv stencil tpacf

IDL
OpenCL

OpenM
P

IDL
OpenCL

OpenM
P

IDL
OpenCL

OpenM
P

IDL
OpenCL

OpenM
P

IDL
OpenCL

OpenM
P

IDL
OpenCL

OpenM
P

IDL
OpenCL

OpenM
P

IDL
OpenCL

OpenM
P

IDL
OpenCL

OpenM
P

IDL
OpenCL

OpenM
P

1

10

100

1000

S
p
e
e
d
u
p
 v

s.
 S

e
q
u
e
n
tia

l

Figure 19. Speedup of our constraints based approach (executed on the best hardware and highlighted in red) compared to
handwritten parallel OpenCL (executed on the GPU) and OpenMP (executed on the CPU) implementations.

CPU iGPU GPU
MKL libSPMV Halide clBLAS CLBlast Lift clSPARSE libSPMV clBLAS CLBlast Lift cuSPARSE libSPMV cuBLAS Lift

CG 1504.21 — — — — — 644.02 — — — — 113.51 — — —

EP — — — — — 32762.50 — — — — 30983.40 — — — 24680.70

IS — — 426.95 — — 1765.61 — — — — 547.28 — — — 99.95

MG — — — — — 4699.63 — — — — 1439.58 — — — 2211.56

histo — — — — — 27.42 — — — — 17.20 — — — 19.54

lbm — — — — — 6457.93 — — — — 5335.09 — — — 590.60

sgemm 53.50 — — 1661.75 660.44 1339.15 — — 14.73 19.03 15.04 — — 5.99 7.87

spmv — 218.17 — — — — — 102.233 — — — — 18.437 — —

stencil — — 5760.81 — — 21951.80 — — — — 2261.48 — — — 279.38

tpacf — — — — — 19276.40 — — — — 61111.90 — — — 23358.20

Table 3. Detailed performance results for each heterogeneous API used in milliseconds. Fastest implementations for each
benchmark and target hardware are highlighted in bold.

These results emphasize the signi�cance of heterogeneous
code generation �exibility.

For �ve of the benchmarks we achieve signi�cantly higher
performance gains, from 17⇥ for CG and up to over 275⇥ for
sgemm. These benchmarks are computationally expensive
and the external GPU is always the fastest architecture by a
considerable margin.
The red highlighting in the plot indicates an important

runtime optimization: redundant data transfers for the it-
erative CG, lbm, spmv and stencil benchmarks. All of these
benchmarks execute computations inside a for loop and do
not require access to the data on the CPU between itera-
tions. We manually applied a straightforward lazy copying

technique by �agging memory objects to avoid redundant
transfers, similar to [24]. As can be seen this runtime opti-
mization is crucial for achieving high performance for these
benchmarks.

API performance comparison Table 3 provides a break-
down of the performance of each API on each program and
platform. Not all APIs target all platforms, e.g. cuSPARSE
only targets NVIDIA GPUs and in the case of Halide, the
current version that we have access to failed to generate
valid GPU code for any of the benchmarks we tried. The best
performing API is highlighted in bold in the table entries.
The spmv benchmark uses an unusual sparse matrix format,

Session 2A: GPUs 1 ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

149

5 approaches

Search using constraints over LLVM IR: IDL+CanDL [18-20]
- targetted APIs in C/Fortran - dense/sparse linear algebra

Black-box Program Synthesis [19-21]
- eliminated need for writing constraints

API matching via IO behavioural equivalence [21-23]
- more robust detection

Program Lifting [22-?]
- beyond APIs lifting to DSLs/MLIR

Neural Compilation [21-?]
- language to assembler translation using NMT/transformer

5 approaches to lifting

Automatic discovery by Program SynthesisDetect code structures that match interface

call Accel

API

Accel

Code

Automatic discovery by Program SynthesisDetect code structures that match interface

Program

call Accel

API

Accel

Code

Idiom
 Description

Constraint
Match API
to Software

Challenge:

Do this entirely
automatically

Automatic discovery by Program SynthesisDetect code structures that match interface

Program

Match
Software

Learn
Hardwarecall Accel

API

Accel

Code

Idiom
 Description

Constraint

Automatic discovery by Program SynthesisDetect and match automatically

Program

Match
Software

Learn
Hardware Use IO, probabilistic

and grey-box
program synthesis

call Accel

API

Accel

Code

Automatic discovery by Program Synthesis Auto-discovery: Synthesise +Generalise

Interrogate
+Synthesise

P IDL

Generate
Constraints

Constraint generation from program is trivial. How to generate a program P ?

P

Type directed synthesis

P

D. Practical Usage

Neither the synthesis nor the generalization procedures
in Figure 2 can guarantee semantic correctness; instead we
rely on the notion of behavioral equivalence as described in
Section IV-E. In practice, we rely on the developer to sign
off on any code replacement. To avoid wasting developer
time with false positives, each potential replacement can be
first checked by comparing the output of the original code
against the suggested replacement. Only successful candidates
are then presented. Section VII describes the ways in which
both the library and program centric components may exhibit
unsoundness, and show that in practice the usefulness of our
tools is not greatly affected.

IV. LEARNING PROGRAMS

A. Annotated Signatures

Automatically learning the behavior of an arbitrary function,
given only its type signature, is generally an intractable
problem. We define a simple language of annotations (in the
spirit of a minimal logic programming language) that can
be used by library vendors to annotate their functions with
arbitrary additional semantic information not expressible in a
type signature.

A useful motivating example is encoding the relationship
between a pointer to allocated memory and the size of that
memory. The upper right corner of Figure 3 shows this being
used to annotate the function daxpy from Figure 1. A full
listing of the annotations used in this paper is given in Sec-
tion IV-B—the properties corresponding to these annotations
are conceptually simple and can be easily extracted from API
documentation.

B. Annotation Details

The descriptions and algorithms given above are abstract
and could be used to instantiate many different program
synthesizers, depending on the annotations and fragment
templates used. The functions evaluated in this paper are
synthesized using five core annotations, each of which is listed
and briefly specified below:
size(xs, n): the pointer xs points to allocated memory

with n elements.
output(x): the pointer x is an output parameter for the

function.
enum(x, c0, ..., cN): the parameter x must take one

of the distinct constant values c0. . .cN.
pack(xs, c): each logical entry in the array pointed to by

xs contains c physical elements.
indices(xs): elements of xs in memory are logically

array indices.
Almost all of the functions we synthesize use at least

one size annotation. The use of separate pointer and size
arguments is endemic to C function signatures, and we found
documentation highlighting this relationship in every library
considered. Similarly, logical output arguments are always
highlighted in documentation (some degree of inference could

SIGNATURE (library vendor)
float daxpy(

int n, float a,

float *x, int incx,

float *y, int incy)

PROGRAM

define float @daxpy(i32, float, float*,
i32, float*, i32) {

entry:
; synthesized LLVM implementation...

}

ANNOTATIONS
(library vendor)
size(x, n)
size(y, n)
output(y)

HEURISTICS (synthesizer)

match(size, ptrA, sz) and
match(size, ptrB, sz) =>
 zipLoop(ptrA, ptrB, sz)

...
match(output, ptr) =>
 store(ptr)

CFG FRAGMENTS
loop(x, n)
loop(y, n)

...
store(y)

...
zipLoop(x, y, n)

CFG STRUCTURES

...
for(ex : x) {
for(ey : y) {

 ey = ...; }}

for(ex,ey : zip(x,y)) {
 ey = ...; }

Fig. 3: A simplified illustration of how our synthesizer learns
an implementation for the daxpy linear algebra function.
Inputs to the process (from the library vendor and the synthe-
sizer itself) are given above the dotted line, and the synthesis
process is given below. The set of annotations given (size
and output) is complete, but the heuristics, fragments and
instantiated CFG compositions have been abbreviated for
brevity. A full explanation of this worked example is given
in Section IV-C

be performed for this annotation by considering const-
specified pointers). The annotation enum is used for BLAS
functions that perform (for example) transposed or non-
transposed versions of the same computation, and we found
the values were listed prominently in documentation.

The remaining two annotations are less closely tied to
documentation, but were used in only a small number of
cases. pack was used to simplify implementation details for
functions dealing with homegeneous structure types, and all
uses of it could easily be removed with no conceptual changes.
Only one use of indices was necessary—when synthesizing
spmv, to ensure that indirect memory accesses were safe.
This annotation could be found in documentation, albeit less
prominently than size and output.

These annotations were sufficient to synthesize all the func-
tions described in Section VII. We do not believe supplying
them represents a significant burden on the library vendor, and
could easily be automated in the simpler cases.

��

Authorized licensed use limited to: University of Edinburgh. Downloaded on August 09,2022 at 16:02:11 UTC from IEEE Xplore. Restrictions apply.

It works

[PACT19]

0.0

2.5

5.0

7.5

10.0

ResNet-152

0.0

2.5

5.0

7.5

10.0

VGG-16

0

2

4

6

DenseNet-201

0

1

2

Pathsample PFold

0.0

0.5

1.0

Pathsample NGT

0.0

0.5

1.0

1.5

2.0

Abinit Titanium

0.0

0.5

1.0

Abinit Water

0.0

0.5

1.0

NWChem Buckyball

0.0

0.5

1.0

NWChem Pentacene

0

5

10

15

20

Parboil SGEMM

S
pe

ed
up

 (×
)

Fig. 6: Performance achievable by adopting code replacements suggested by our tools, for both Intel MKL and Nvidia CUDA
libraries across the set of benchmarks listed.

the Nvidia libraries by a small margin in both cases. If we
only used Nvidia libraries, there would be speedup available
in the case of NGT.

This pattern continues with NWChem where MKL signifi-
cantly outperforms the Nvidia libraries. Modest speedups are
available for both configurations with an end-end speedup of
1.2× Abinit shows a different behavior, where the Nvidia
libraries outperform MKL, giving 1.2 to 1.9× speedup. This
is possibly due to the increased array sizes where the benefits
of acceleration outweigh communication overhead. Unlike
NWChem, both acceleration libraries improve performance.

We see more significant improvement for the DNNs as
the amount of time spent in accelerator code sections is
much greater. Improvements range from 5.5× for the smaller
DenseNet-201 to 11× for the largest network: VGG-16. Like
Pathsample and NWChem, all the the DNNs achieve the
greatest performance with MKL, though Nvidia libraries still
give improvements: 3.2× to 7.7×. The impact of Amdahl’s
law can be clearly seen for Parboil SGEMM. Here there is
just one kernel that can be readily accelerated. It achieves
15× to 19× speedups and provides a best case example.

B. Porting to New Hardware

Within Darknet, the use of optimized GPU libraries is built
into the code: CUDA and CPU implementations are mixed
together using preprocessor directives and the build system.
As CUDA is not available on AMD GPU platforms, porting
Darknet to such a platform means targeting OpenCL based
libraries such as the CLBlast library [19], the results of which
are shown in Figure 7.

We compared the performance of “out-of-the-box” Darknet
against a handwritten OpenMP version [20], and our approach.
The results of this comparison are shown in Figure 7. On
all three networks, our approach outperforms the OpenMP

0

2

4

ResNet-152

0

5

VGG-16

0

1

2

DenseNet-201

Sp
ee

du
p

(×
)

Fig. 7: Performance results for neural network inference on
an AMD device with no CUDA support.

implementation which represents the best readily-available
CPU performance on an AMD processor. We achieve speedups
from 2.4× on DenseNet-201 to 9× on VGG-16. DenseNet-
201 performs smaller matrix multiplications than the other
networks, and so benefits less from GPU execution. Our
results show that our approach allows for programmers to
port applications to other platforms, without having to support
multiple code bases for each possible implementation.

C. Library API usage

Table III shows the number of library call sites we de-
tected in the original applications. For simplicity. we group
functions that perform the same abstract computation to-
gether. For example, cublas_sgemm, cblas_sgemm and
clblast::Gemm<float> are all considered together in
the GEMM group.

Some of the applications we examined make extensive
use of library functions. For example, Abinit links against
an installed standard BLAS library, and so all the instances
we detect in its code are from inlined library calls. Other
applications bundle their own implementations; our approach
detects this code rather than the corresponding call sites which
results in a smaller overall number of matches. The true

��

Authorized licensed use limited to: University of Edinburgh. Downloaded on August 09,2022 at 16:02:11 UTC from IEEE Xplore. Restrictions apply.

It works

[PACT19]

0.0

2.5

5.0

7.5

10.0

ResNet-152

0.0

2.5

5.0

7.5

10.0

VGG-16

0

2

4

6

DenseNet-201

0

1

2

Pathsample PFold

0.0

0.5

1.0

Pathsample NGT

0.0

0.5

1.0

1.5

2.0

Abinit Titanium

0.0

0.5

1.0

Abinit Water

0.0

0.5

1.0

NWChem Buckyball

0.0

0.5

1.0

NWChem Pentacene

0

5

10

15

20

Parboil SGEMM

S
pe

ed
up

 (×
)

Fig. 6: Performance achievable by adopting code replacements suggested by our tools, for both Intel MKL and Nvidia CUDA
libraries across the set of benchmarks listed.

the Nvidia libraries by a small margin in both cases. If we
only used Nvidia libraries, there would be speedup available
in the case of NGT.

This pattern continues with NWChem where MKL signifi-
cantly outperforms the Nvidia libraries. Modest speedups are
available for both configurations with an end-end speedup of
1.2× Abinit shows a different behavior, where the Nvidia
libraries outperform MKL, giving 1.2 to 1.9× speedup. This
is possibly due to the increased array sizes where the benefits
of acceleration outweigh communication overhead. Unlike
NWChem, both acceleration libraries improve performance.

We see more significant improvement for the DNNs as
the amount of time spent in accelerator code sections is
much greater. Improvements range from 5.5× for the smaller
DenseNet-201 to 11× for the largest network: VGG-16. Like
Pathsample and NWChem, all the the DNNs achieve the
greatest performance with MKL, though Nvidia libraries still
give improvements: 3.2× to 7.7×. The impact of Amdahl’s
law can be clearly seen for Parboil SGEMM. Here there is
just one kernel that can be readily accelerated. It achieves
15× to 19× speedups and provides a best case example.

B. Porting to New Hardware

Within Darknet, the use of optimized GPU libraries is built
into the code: CUDA and CPU implementations are mixed
together using preprocessor directives and the build system.
As CUDA is not available on AMD GPU platforms, porting
Darknet to such a platform means targeting OpenCL based
libraries such as the CLBlast library [19], the results of which
are shown in Figure 7.

We compared the performance of “out-of-the-box” Darknet
against a handwritten OpenMP version [20], and our approach.
The results of this comparison are shown in Figure 7. On
all three networks, our approach outperforms the OpenMP

0

2

4

ResNet-152

0

5

VGG-16

0

1

2

DenseNet-201

Sp
ee

du
p

(×
)

Fig. 7: Performance results for neural network inference on
an AMD device with no CUDA support.

implementation which represents the best readily-available
CPU performance on an AMD processor. We achieve speedups
from 2.4× on DenseNet-201 to 9× on VGG-16. DenseNet-
201 performs smaller matrix multiplications than the other
networks, and so benefits less from GPU execution. Our
results show that our approach allows for programmers to
port applications to other platforms, without having to support
multiple code bases for each possible implementation.

C. Library API usage

Table III shows the number of library call sites we de-
tected in the original applications. For simplicity. we group
functions that perform the same abstract computation to-
gether. For example, cublas_sgemm, cblas_sgemm and
clblast::Gemm<float> are all considered together in
the GEMM group.

Some of the applications we examined make extensive
use of library functions. For example, Abinit links against
an installed standard BLAS library, and so all the instances
we detect in its code are from inlined library calls. Other
applications bundle their own implementations; our approach
detects this code rather than the corresponding call sites which
results in a smaller overall number of matches. The true

��

Authorized licensed use limited to: University of Edinburgh. Downloaded on August 09,2022 at 16:02:11 UTC from IEEE Xplore. Restrictions apply.

But requires type annotations - not fully automatic

GPCE ’20, November 16–17, 2020, Virtual, USA Bruce Collie, Jackson Woodru�, and Michael F.P. O’Boyle

PREDICTION

SYNTHESIS

SPECIFICATION

TYPEIMPLEMENTATION

INPUTS OUTPUTS

FRAGMENT POPULATION

GENERATE IID MODEL

MARKOV MODEL

??? ???

?

?

?

?

?

?

??? ?

?

?

?

?

? ?

?

?

?

?

?

? ?

?

?

?

?

? ?

INITIAL FRAGMENTS

SKETCHES

FRAGMENT
DISTRIBUTION

PROGRAMITERATE SAMPLE

INSTRUCTIONS
add %0, %1add %0, %1add %0, %1

add %0, %1add %0, %1br %lab

add %0, %1add %0, %1shl 2, %a

add %0, %1add %0, %1mul 2, %xs

int f(int a, int *b)
{
 int d =;
 for(int i = ...) {
 d = ...
 }
 return d;
}

Figure 1. A summary of P�����’s implementation. Fragment distributions are learned by IID and Markov models using the
problem speci�cation and initial fragment population. Sketches are then sampled and synthesized into executable programs.

the generated program [9]. However, testing over a large
set of examples can provide observational equality, which
is widely accepted as a su�ciently strong guarantee [18] in
the absence of formal proof.

Sketching. Our approach uses ideas from sketching pro-
gram synthesis [52]: a high level partial structure, or sketch,
of the target program allows for e�cient search through
a space of potential solutions. While many techniques use
externally provided sketches [51], our scheme uses a two-
phase synthesis process [55] where sketches are constructed
by the synthesizer based on the problem speci�cation (in
our case, a type signature and IO examples).
However, IO examples alone are not su�cient to synthe-

size programs that use complex components. We use prior
observations of synthesized program structure to build a
probability distribution over fragments of sketches given
a type signature and a set of IO examples. Speci�cally, we
develop two models: IID and Markov.

The �rst, IID, assumes independence among sketch frag-
ments (Independent and Identically Distributed), while the
second assumes the next fragment is dependent on the cur-
rent one (i.e. a Markov model). Using this approach, we syn-
thesize a wide range of complex components from black-box
speci�cations.

There is a large body of related work in this diverse area.
and providing a fair comparison is a challenge [29, 40]. In
this paper we attempt a fair, systematic and reproducible
evaluation of representative state-of the art existing schemes.
As our approach is driven by a probabilistic model of

sketches, we analyze the learned distributions and the result-
ing insights into program structure. We then evaluate the use
of black-box synthesis in two application areas: rejuvenating
legacy scienti�c code and detecting reimplementations of
library code.

Outputs

black_box(Inputs) {

 // implementation...

}

INPUTS

OUTPUTS

GPCE ’20, November 16–17, 2020, Virtual, USA Bruce Collie, Jackson Woodru�, and Michael F.P. O’Boyle

PREDICTION

SYNTHESIS

SPECIFICATION

TYPEIMPLEMENTATION

INPUTS OUTPUTS

FRAGMENT POPULATION

GENERATE IID MODEL

MARKOV MODEL

??? ???

?

?

?

?

?

?

??? ?

?

?

?

?

? ?

?

?

?

?

?

? ?

?

?

?

?

? ?

INITIAL FRAGMENTS

SKETCHES

FRAGMENT
DISTRIBUTION

PROGRAMITERATE SAMPLE

INSTRUCTIONS
add %0, %1add %0, %1add %0, %1

add %0, %1add %0, %1br %lab

add %0, %1add %0, %1shl 2, %a

add %0, %1add %0, %1mul 2, %xs

int f(int a, int *b)
{
 int d =;
 for(int i = ...) {
 d = ...
 }
 return d;
}

Figure 1. A summary of P�����’s implementation. Fragment distributions are learned by IID and Markov models using the
problem speci�cation and initial fragment population. Sketches are then sampled and synthesized into executable programs.

the generated program [9]. However, testing over a large
set of examples can provide observational equality, which
is widely accepted as a su�ciently strong guarantee [18] in
the absence of formal proof.

Sketching. Our approach uses ideas from sketching pro-
gram synthesis [52]: a high level partial structure, or sketch,
of the target program allows for e�cient search through
a space of potential solutions. While many techniques use
externally provided sketches [51], our scheme uses a two-
phase synthesis process [55] where sketches are constructed
by the synthesizer based on the problem speci�cation (in
our case, a type signature and IO examples).
However, IO examples alone are not su�cient to synthe-

size programs that use complex components. We use prior
observations of synthesized program structure to build a
probability distribution over fragments of sketches given
a type signature and a set of IO examples. Speci�cally, we
develop two models: IID and Markov.

The �rst, IID, assumes independence among sketch frag-
ments (Independent and Identically Distributed), while the
second assumes the next fragment is dependent on the cur-
rent one (i.e. a Markov model). Using this approach, we syn-
thesize a wide range of complex components from black-box
speci�cations.

There is a large body of related work in this diverse area.
and providing a fair comparison is a challenge [29, 40]. In
this paper we attempt a fair, systematic and reproducible
evaluation of representative state-of the art existing schemes.
As our approach is driven by a probabilistic model of

sketches, we analyze the learned distributions and the result-
ing insights into program structure. We then evaluate the use
of black-box synthesis in two application areas: rejuvenating
legacy scienti�c code and detecting reimplementations of
library code.

Outputs

black_box(Inputs) {

 // implementation...

}

INPUTS

OUTPUTS

Use ML signature priors to guide sketch
IO, grey behaviour -> predict fragments

It works

[PACT19]

0.0

2.5

5.0

7.5

10.0

ResNet-152

0.0

2.5

5.0

7.5

10.0

VGG-16

0

2

4

6

DenseNet-201

0

1

2

Pathsample PFold

0.0

0.5

1.0

Pathsample NGT

0.0

0.5

1.0

1.5

2.0

Abinit Titanium

0.0

0.5

1.0

Abinit Water

0.0

0.5

1.0

NWChem Buckyball

0.0

0.5

1.0

NWChem Pentacene

0

5

10

15

20

Parboil SGEMM

S
pe

ed
up

 (×
)

Fig. 6: Performance achievable by adopting code replacements suggested by our tools, for both Intel MKL and Nvidia CUDA
libraries across the set of benchmarks listed.

the Nvidia libraries by a small margin in both cases. If we
only used Nvidia libraries, there would be speedup available
in the case of NGT.

This pattern continues with NWChem where MKL signifi-
cantly outperforms the Nvidia libraries. Modest speedups are
available for both configurations with an end-end speedup of
1.2× Abinit shows a different behavior, where the Nvidia
libraries outperform MKL, giving 1.2 to 1.9× speedup. This
is possibly due to the increased array sizes where the benefits
of acceleration outweigh communication overhead. Unlike
NWChem, both acceleration libraries improve performance.

We see more significant improvement for the DNNs as
the amount of time spent in accelerator code sections is
much greater. Improvements range from 5.5× for the smaller
DenseNet-201 to 11× for the largest network: VGG-16. Like
Pathsample and NWChem, all the the DNNs achieve the
greatest performance with MKL, though Nvidia libraries still
give improvements: 3.2× to 7.7×. The impact of Amdahl’s
law can be clearly seen for Parboil SGEMM. Here there is
just one kernel that can be readily accelerated. It achieves
15× to 19× speedups and provides a best case example.

B. Porting to New Hardware

Within Darknet, the use of optimized GPU libraries is built
into the code: CUDA and CPU implementations are mixed
together using preprocessor directives and the build system.
As CUDA is not available on AMD GPU platforms, porting
Darknet to such a platform means targeting OpenCL based
libraries such as the CLBlast library [19], the results of which
are shown in Figure 7.

We compared the performance of “out-of-the-box” Darknet
against a handwritten OpenMP version [20], and our approach.
The results of this comparison are shown in Figure 7. On
all three networks, our approach outperforms the OpenMP

0

2

4

ResNet-152

0

5

VGG-16

0

1

2

DenseNet-201

Sp
ee

du
p

(×
)

Fig. 7: Performance results for neural network inference on
an AMD device with no CUDA support.

implementation which represents the best readily-available
CPU performance on an AMD processor. We achieve speedups
from 2.4× on DenseNet-201 to 9× on VGG-16. DenseNet-
201 performs smaller matrix multiplications than the other
networks, and so benefits less from GPU execution. Our
results show that our approach allows for programmers to
port applications to other platforms, without having to support
multiple code bases for each possible implementation.

C. Library API usage

Table III shows the number of library call sites we de-
tected in the original applications. For simplicity. we group
functions that perform the same abstract computation to-
gether. For example, cublas_sgemm, cblas_sgemm and
clblast::Gemm<float> are all considered together in
the GEMM group.

Some of the applications we examined make extensive
use of library functions. For example, Abinit links against
an installed standard BLAS library, and so all the instances
we detect in its code are from inlined library calls. Other
applications bundle their own implementations; our approach
detects this code rather than the corresponding call sites which
results in a smaller overall number of matches. The true

��

Authorized licensed use limited to: University of Edinburgh. Downloaded on August 09,2022 at 16:02:11 UTC from IEEE Xplore. Restrictions apply.

It really works!

[PACT19] [ASE20] [GPCE20] [PACT21]
Remove annotation hints, Use prior and grey knowledge

0.0

2.5

5.0

7.5

10.0

ResNet-152

0.0

2.5

5.0

7.5

10.0

VGG-16

0

2

4

6

DenseNet-201

0

1

2

Pathsample PFold

0.0

0.5

1.0

Pathsample NGT

0.0

0.5

1.0

1.5

2.0

Abinit Titanium

0.0

0.5

1.0

Abinit Water

0.0

0.5

1.0

NWChem Buckyball

0.0

0.5

1.0

NWChem Pentacene

0

5

10

15

20

Parboil SGEMM

S
pe

ed
up

 (×
)

Fig. 6: Performance achievable by adopting code replacements suggested by our tools, for both Intel MKL and Nvidia CUDA
libraries across the set of benchmarks listed.

the Nvidia libraries by a small margin in both cases. If we
only used Nvidia libraries, there would be speedup available
in the case of NGT.

This pattern continues with NWChem where MKL signifi-
cantly outperforms the Nvidia libraries. Modest speedups are
available for both configurations with an end-end speedup of
1.2× Abinit shows a different behavior, where the Nvidia
libraries outperform MKL, giving 1.2 to 1.9× speedup. This
is possibly due to the increased array sizes where the benefits
of acceleration outweigh communication overhead. Unlike
NWChem, both acceleration libraries improve performance.

We see more significant improvement for the DNNs as
the amount of time spent in accelerator code sections is
much greater. Improvements range from 5.5× for the smaller
DenseNet-201 to 11× for the largest network: VGG-16. Like
Pathsample and NWChem, all the the DNNs achieve the
greatest performance with MKL, though Nvidia libraries still
give improvements: 3.2× to 7.7×. The impact of Amdahl’s
law can be clearly seen for Parboil SGEMM. Here there is
just one kernel that can be readily accelerated. It achieves
15× to 19× speedups and provides a best case example.

B. Porting to New Hardware

Within Darknet, the use of optimized GPU libraries is built
into the code: CUDA and CPU implementations are mixed
together using preprocessor directives and the build system.
As CUDA is not available on AMD GPU platforms, porting
Darknet to such a platform means targeting OpenCL based
libraries such as the CLBlast library [19], the results of which
are shown in Figure 7.

We compared the performance of “out-of-the-box” Darknet
against a handwritten OpenMP version [20], and our approach.
The results of this comparison are shown in Figure 7. On
all three networks, our approach outperforms the OpenMP

0

2

4

ResNet-152

0

5

VGG-16

0

1

2

DenseNet-201

Sp
ee

du
p

(×
)

Fig. 7: Performance results for neural network inference on
an AMD device with no CUDA support.

implementation which represents the best readily-available
CPU performance on an AMD processor. We achieve speedups
from 2.4× on DenseNet-201 to 9× on VGG-16. DenseNet-
201 performs smaller matrix multiplications than the other
networks, and so benefits less from GPU execution. Our
results show that our approach allows for programmers to
port applications to other platforms, without having to support
multiple code bases for each possible implementation.

C. Library API usage

Table III shows the number of library call sites we de-
tected in the original applications. For simplicity. we group
functions that perform the same abstract computation to-
gether. For example, cublas_sgemm, cblas_sgemm and
clblast::Gemm<float> are all considered together in
the GEMM group.

Some of the applications we examined make extensive
use of library functions. For example, Abinit links against
an installed standard BLAS library, and so all the instances
we detect in its code are from inlined library calls. Other
applications bundle their own implementations; our approach
detects this code rather than the corresponding call sites which
results in a smaller overall number of matches. The true

��

Authorized licensed use limited to: University of Edinburgh. Downloaded on August 09,2022 at 16:02:11 UTC from IEEE Xplore. Restrictions apply.

0.0

2.5

5.0

7.5

10.0

ResNet-152

0.0

2.5

5.0

7.5

10.0

VGG-16

0

2

4

6

DenseNet-201

0

1

2

Pathsample PFold

0.0

0.5

1.0

Pathsample NGT

0.0

0.5

1.0

1.5

2.0

Abinit Titanium

0.0

0.5

1.0

Abinit Water

0.0

0.5

1.0

NWChem Buckyball

0.0

0.5

1.0

NWChem Pentacene

0

5

10

15

20

Parboil SGEMM

S
pe

ed
up

 (×
)

Fig. 6: Performance achievable by adopting code replacements suggested by our tools, for both Intel MKL and Nvidia CUDA
libraries across the set of benchmarks listed.

the Nvidia libraries by a small margin in both cases. If we
only used Nvidia libraries, there would be speedup available
in the case of NGT.

This pattern continues with NWChem where MKL signifi-
cantly outperforms the Nvidia libraries. Modest speedups are
available for both configurations with an end-end speedup of
1.2× Abinit shows a different behavior, where the Nvidia
libraries outperform MKL, giving 1.2 to 1.9× speedup. This
is possibly due to the increased array sizes where the benefits
of acceleration outweigh communication overhead. Unlike
NWChem, both acceleration libraries improve performance.

We see more significant improvement for the DNNs as
the amount of time spent in accelerator code sections is
much greater. Improvements range from 5.5× for the smaller
DenseNet-201 to 11× for the largest network: VGG-16. Like
Pathsample and NWChem, all the the DNNs achieve the
greatest performance with MKL, though Nvidia libraries still
give improvements: 3.2× to 7.7×. The impact of Amdahl’s
law can be clearly seen for Parboil SGEMM. Here there is
just one kernel that can be readily accelerated. It achieves
15× to 19× speedups and provides a best case example.

B. Porting to New Hardware

Within Darknet, the use of optimized GPU libraries is built
into the code: CUDA and CPU implementations are mixed
together using preprocessor directives and the build system.
As CUDA is not available on AMD GPU platforms, porting
Darknet to such a platform means targeting OpenCL based
libraries such as the CLBlast library [19], the results of which
are shown in Figure 7.

We compared the performance of “out-of-the-box” Darknet
against a handwritten OpenMP version [20], and our approach.
The results of this comparison are shown in Figure 7. On
all three networks, our approach outperforms the OpenMP

0

2

4

ResNet-152

0

5

VGG-16

0

1

2

DenseNet-201

Sp
ee

du
p

(×
)

Fig. 7: Performance results for neural network inference on
an AMD device with no CUDA support.

implementation which represents the best readily-available
CPU performance on an AMD processor. We achieve speedups
from 2.4× on DenseNet-201 to 9× on VGG-16. DenseNet-
201 performs smaller matrix multiplications than the other
networks, and so benefits less from GPU execution. Our
results show that our approach allows for programmers to
port applications to other platforms, without having to support
multiple code bases for each possible implementation.

C. Library API usage

Table III shows the number of library call sites we de-
tected in the original applications. For simplicity. we group
functions that perform the same abstract computation to-
gether. For example, cublas_sgemm, cblas_sgemm and
clblast::Gemm<float> are all considered together in
the GEMM group.

Some of the applications we examined make extensive
use of library functions. For example, Abinit links against
an installed standard BLAS library, and so all the instances
we detect in its code are from inlined library calls. Other
applications bundle their own implementations; our approach
detects this code rather than the corresponding call sites which
results in a smaller overall number of matches. The true

��

Authorized licensed use limited to: University of Edinburgh. Downloaded on August 09,2022 at 16:02:11 UTC from IEEE Xplore. Restrictions apply.

It works

[PACT19] [ASE20] [GPCE20] [PACT21]
Remove annotation hints, Use prior and grey knowledge

Automatically matches
accelerator libraries to

legacy code

0.0

2.5

5.0

7.5

10.0

ResNet-152

0.0

2.5

5.0

7.5

10.0

VGG-16

0

2

4

6

DenseNet-201

0

1

2

Pathsample PFold

0.0

0.5

1.0

Pathsample NGT

0.0

0.5

1.0

1.5

2.0

Abinit Titanium

0.0

0.5

1.0

Abinit Water

0.0

0.5

1.0

NWChem Buckyball

0.0

0.5

1.0

NWChem Pentacene

0

5

10

15

20

Parboil SGEMM

S
pe

ed
up

 (×
)

Fig. 6: Performance achievable by adopting code replacements suggested by our tools, for both Intel MKL and Nvidia CUDA
libraries across the set of benchmarks listed.

the Nvidia libraries by a small margin in both cases. If we
only used Nvidia libraries, there would be speedup available
in the case of NGT.

This pattern continues with NWChem where MKL signifi-
cantly outperforms the Nvidia libraries. Modest speedups are
available for both configurations with an end-end speedup of
1.2× Abinit shows a different behavior, where the Nvidia
libraries outperform MKL, giving 1.2 to 1.9× speedup. This
is possibly due to the increased array sizes where the benefits
of acceleration outweigh communication overhead. Unlike
NWChem, both acceleration libraries improve performance.

We see more significant improvement for the DNNs as
the amount of time spent in accelerator code sections is
much greater. Improvements range from 5.5× for the smaller
DenseNet-201 to 11× for the largest network: VGG-16. Like
Pathsample and NWChem, all the the DNNs achieve the
greatest performance with MKL, though Nvidia libraries still
give improvements: 3.2× to 7.7×. The impact of Amdahl’s
law can be clearly seen for Parboil SGEMM. Here there is
just one kernel that can be readily accelerated. It achieves
15× to 19× speedups and provides a best case example.

B. Porting to New Hardware

Within Darknet, the use of optimized GPU libraries is built
into the code: CUDA and CPU implementations are mixed
together using preprocessor directives and the build system.
As CUDA is not available on AMD GPU platforms, porting
Darknet to such a platform means targeting OpenCL based
libraries such as the CLBlast library [19], the results of which
are shown in Figure 7.

We compared the performance of “out-of-the-box” Darknet
against a handwritten OpenMP version [20], and our approach.
The results of this comparison are shown in Figure 7. On
all three networks, our approach outperforms the OpenMP

0

2

4

ResNet-152

0

5

VGG-16

0

1

2

DenseNet-201

Sp
ee

du
p

(×
)

Fig. 7: Performance results for neural network inference on
an AMD device with no CUDA support.

implementation which represents the best readily-available
CPU performance on an AMD processor. We achieve speedups
from 2.4× on DenseNet-201 to 9× on VGG-16. DenseNet-
201 performs smaller matrix multiplications than the other
networks, and so benefits less from GPU execution. Our
results show that our approach allows for programmers to
port applications to other platforms, without having to support
multiple code bases for each possible implementation.

C. Library API usage

Table III shows the number of library call sites we de-
tected in the original applications. For simplicity. we group
functions that perform the same abstract computation to-
gether. For example, cublas_sgemm, cblas_sgemm and
clblast::Gemm<float> are all considered together in
the GEMM group.

Some of the applications we examined make extensive
use of library functions. For example, Abinit links against
an installed standard BLAS library, and so all the instances
we detect in its code are from inlined library calls. Other
applications bundle their own implementations; our approach
detects this code rather than the corresponding call sites which
results in a smaller overall number of matches. The true

��

Authorized licensed use limited to: University of Edinburgh. Downloaded on August 09,2022 at 16:02:11 UTC from IEEE Xplore. Restrictions apply.

It works

[PACT19] [ASE20] [GPCE20] [PACT21]
Remove annotation hints, Use prior and grey knowledge

Automatically matches
accelerator libraries to

legacy code

No programmer in the loop

5 approaches

Search using constraints over LLVM IR: IDL+CanDL [18-20]
- targetted APIs in C/Fortran - dense/sparse linear algebra

Black-box Program Synthesis [19-21]
- eliminated need for writing constraints

API matching via IO behavioural equivalence [21-23]
- more robust detection

Program Lifting [22-?]
- beyond APIs lifting to DSLs/MLIR

Neural Compilation [21-?]
- language to assembler translation using NMT/transformer

5 approaches to lifting

call FFTA

API

Accel

Code

Although accelerator discovery is possible

Matching complex accelerators to code
is challenging

Big-step Acceleration: FFT

call FFTA

call FFTA

API

Accel

Code

Modified Code

Accel

APIUser FFT

Acc FFT

Matching complex accelerators is challenging

- Behaviour unlikely to match user code

- FFT acceleration a good example

Big-step Acceleration: FFT

call FFTA

call FFTA

API

Accel

Code

Modified Code

Accel

APIUser FFT

Acc FFT

Need to bridge gap

- Applied to Raw C GitHub code

- Discovered, modified and replaced
- with libs or accelerators

- FFTW, SHARC DSP, PowerQuad

Big-step Acceleration: FFTBridge the gap on real code

Rather than constraints to match

Use a neural classifier

- detects FFTish Github code

Then IO behavioural equivalence

- does it have same behaviour?

Patch up with specialised synthesised
normalisation code

Neural Classifier + IO behaviour

Bind the Gap: Compiling Real Software to Hardware FFT Accelerators PLDI ’22, June 13–17, 2022, San Diego, CA, USA

DFT

Si
ze

 6
4

Si
ze

 2
56

Figure 10. Comparing offloading techniques between on the Analog Devices ADSP-SC589 Development board. Inputs of size
1024 are used unless otherwise noted. An Arm Cortex-A5 is the master core, and can offload either to the SC-589 DSP or to the
FFTA accelerator. A neural embedding is used to offload to the DSP core and achieves geometric mean speedup of 3.5x. FACC
offloads to the FFTA, and achieves corresponding speedup of 27x.

Figure 11. Cross-validation accuracy (mean and standard
deviation) of our ProGraML-based neural classifier in terms
of the number examples per class when trained using a re-
duced version of the OJClone dataset with FFT examples
injected.

examples is identical. The difference in compile time is due
to different supported input lengths: the PowerQuad sup-
ports smaller input sizes, which are faster to test. None of
these programs result in excessively large search spaces. If
the search space were to grow, standard synthesis pruning
techniques could be applied [28].

0 10 20 30 40 50 60 70
Number of Lines of IDL

0.2

0.4

0.6

0.8

Fr
ac

tio
n

of
 F

FT
s

M
at

ch
ed

Figure 12. How the number of patterns matched changes
with the length of the IDL pattern used. IDL patterns tomatch
entire FFTs are thousands of lines long and do not generalize.
By 50 lines we have only a single remaining match and still
only cover the prologue of a single FFT function.

9 Related Work

9.1 Algorithm Identification

A number of techniques have been developed that enable
algorithm identification within extensive user codebases.
Vector-embedding techniques such as code2vec [18] can be
used to identify and label algorithms in code. There are
numerous techniques that use larger, code-clone specific
datasets to achieve quantifiable results. Embeddings such as
ProGraML [42] achieve upwards of 95% accuracy in clone de-
tection, and a number of other machine-learning approaches
using static information exist [30, 51, 55, 95, 101, 132, 134,
139]. Dynamic runtime information can also be used for this
task [129] and numerous approaches developed without ma-
chine learning exist [69, 70, 74, 110]. API-recommendation

697

[PLDI22]

Bind the Gap: Compiling Real Software to Hardware FFT Accelerators PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Table 1. Features of each benchmark used, representative of a wide range of implementation styles, from highly-optimized
several-thousand line implementations to short, simple Discrete Fourier Transforms (DFTs).

Project
Lines of
Code

Lengths
Supported

Algorithm Twiddle Factors
Imaginary
Numbers

Pointer
Arithmetic

Loop Structure Optimizations

0 83 Only 64 Radix-2 FFT Constant Custom No While-True-Break Minimal

1 278
Powers of 2
(≤ 256)

Radix-2 FFT Constant Custom No Do-While/For Minimal

2 65 Powers of 2 Radix-2 FFT Computed in FFT Custom No For/Recursive Minimal
3 107 Powers of 2 Radix-2 FFT Computed in FFT Custom No For Minimal
4 934 All Mixed-Radix FFT Computed in FFT Custom No For/Recursive Extensive Unrolling
5 2159 All Mixed-Radix FFT Pre-Computed Custom Yes For Hand-Vectorized/Unrolled
6 77 Powers of 2 Radix-2 FFT Computed in FFT Custom No For Minimal
7 237 Powers of 2 Radix-2 FFT Pre-Computed Custom Yes For Minimal
8 101 Powers of 2 Radix-2 FFT (DIF) Computed in FFT C99 Complex No For Minimal
9 1627 All Mixed-Radix FFT Pre-Computed Custom Yes For/While/Recursive Extensive Unrolling
10 75 Powers of 2 Radix-2 FFT Pre-Computed Custom No For Minimal
11 538 All Mixed-Radix FFT Pre-Computed Custom Yes Do-While/For Twiddle-Factor Memoization
12 367 All Mixed-Radix + Bluestein Computed in FFT Custom No For/Recursive Unrolling
13 101 Powers of 2 Radix-2 FFT (DIT) Computed in FFT C99 Complex No For Minimal
14 314 Powers of 2 Radix-2 FFT Computed in FFT None No For Minimal
15 215 All Recursive FFT Computed in FFT C99 Complex No Recursive Minimal
16 20 All DFT Unneeded C99 Complex No For None
17 12 All DFT Unneeded C99 Complex No For None

IDL ProGraML FACC

0.2

0.4

0.6

0.8

Fr
ac

tio
n

of
 F

FT
s

Compiled
Matched
Unmatched

Figure 9. Performance of different strategies: constraint
matching, neural embeddings and FACC.

Implementation FACC is implemented using OCaml,
with behavioral synthesis libraries implemented in C. FACC
currently has a C backend which is compatible with
toolchains for the various backend targets. In total our im-
plementation is 13,000 lines of OCaml, with 1,000 lines for
range check generation, 1,000 lines for behavioural synthesis,
3,000 lines for binding, and 4,000 lines for backend-specific
generation and the remaining 4,000 used for various utilities.
All compiler and benchmark code is available at [12].

Experimental Setup Codes were placed in a benchmark
suite that tests them on inputs that could be accelerated by
the accelerator in question. We evaluate on three platforms:

FFTW : A desktop environment running Windows Sub-
system for Linux and using an Intel i9-10900X processor and
the FFTW optimized library. Code is available at [12].
ADSP board (SC589/FFTA): A multicore embedded en-

vironment using the Analog Devices ADSP-SC589 Devel-
opment board with an Arm Cortex A5 as a primary core,
an SC589 SHARC DSP core and an FFTA Fourier transform
hardware accelerator. Code is available at [14].

NXP Board (Powerquad): A single core embedded envi-
ronment using the NXP LPC55S69 Development board with
an Arm M33 as a primary core and an NXP PowerQuad ac-
celerator capable of accelerating Fourier transforms. Code is
available at [15].

Competitive Approaches We evaluate IDL [59], an exist-
ing constraint based approach to identifying code sections
for acceleration. We evaluate our ProGraML-based classi-
fier’s [42] speedup by offloading FFTs to an SC589 DSP core.
FFTs can be offloaded to the SC589 DSP core simply by identi-
fying them, but the semantic information required to offload
to the FFTA is not inferred. Rather, we use ProGraML as a
hint that the code is likely to perform better on the DSP than
the CPU.

8 Results

We evaluate FACC along several dimensions, comparing
against success rates of IDL and ProGraML (section 8.2),
performance of IDL and ProGraML (section 8.3), performance
across multiple platforms (section 8.4) and properties of the
compilation (section 8.5).

8.1 Which Benchmarks Does FACC Support?

FACC compiles 18 of the 25 implementations as shown in
Figure 8. Table 1 shows a summary of the code features used
in the projects FACC is able to compile. We can see that
implementations vary both at the level of functionality they
support, with different implementations supporting different
lengths of input, and in the way they implement the Fourier
transform. Approaches vary between 12 and 2,159 lines of
code, using iterative and recursive approaches. A number
of implementations unroll loops and base cases by hand to

695

Big-step Acceleration: FFT

GitHub code in the wild: Vast range of styles, quality, behaviour

Automatically generates adaptor code

Big-step Acceleration: FFT

APIUser FFT

Acc FFT

Automatically generates adaptor code

- Range check

- Type conversion

- Variable binding

- Sythesized normalisation code

Big-step Acceleration: FFT

Speedup over CPU baseline using either FFTW library, FFTA Sharc DSP, NXP PowerQuad

Project numbers refer to legacy C GitHub code

Big-step Acceleration: FFT

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

Conference’17, July 2017, Washington, DC, USA Anon.

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

Algorithm Code LoC Layout Sizes Optimizations

Naive

1 11 Column-major Squared None
2 117 Both Any None
3 15 Row-major Any None
4 23 Column-major Squared None
5 27 Row-major Squared OpenMP
6 9 Row-major Any None
7 9 Row-major Any None
8 18 Column-major Squared OpenMP
9 131 Row-major Any OpenMP
10 12 Row-major Any None
11 18 Row-major Multiple of nthreads C++ threads
12 63 Row-major Squared C++ threads
13 16 Column-major Any None
14 31 Column-major Any None
15 31 Column-major Any None
16 38 Row-major Any None
17 8 Row-major Squared None

Unrolled

18 43 Row-major Any None
19 38 Row-major Any None
20 43 Row-major Squared OpenMP
21 33 Row-major Squared, multiple of bs None

Kernel Calls

22 23 Column-major Any None
23 89 Column-major Any OpenMP
24 26 Column-major Any None
25 62 Column-major Any Unrolled

Algorithm Code LoC Layout Sizes Optimizations
Kernel Calls 26 106 Column-major Any Unrolled

Blocked

27 76 Row-major Any Block
28 21 Row-major Squared OpenMP
29 41 Column-major Any None
30 31 Row-major Squared None
31 27 Column-major Squared None
32 37 Row-major Multiple of bs Unrolled
33 44 Row-major Squared None
34 13 Row-major Squared None
35 16 Row-major Squared None

Goto 36 176 Column-major Squared Intrinsics (SSE)
37 54 Row-major Squared None

Strassen
38 152 Row-major Squared None
39 200 Row-major Squared, power of 2 None
40 82 Row-major Squared None

Intrinsics

41 75 Row-major Squared Intrinsics (AVX2)
42 76 Row-major Multiple of 8 Intrinsics (AVX2)
43 62 Row-major Multiple of 8 Intrinsics (AVX2)
44 53 Row-major Any Intrinsics (SSE)
45 89 Row-major Multiple of bs Intrinsics (AVX2)
46 108 Row-major Multiple of bs Intrinsics (AVX2)
47 287 Row-major Any Intrinsics (AVX2)
48 354 Row-major Multiple of bs Intrinsics (AVX2)
49 44 Row-major Multiple of bs Intrinsics (AVX2)
50 62 Row-major Any Intrinsics (SSE)

Figure 5. List of GEMM codes

Code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
IDL Y Y N Y N N N N N Y N N N N N N N Y Y N N N N N N
KFR Y Y Y Y Y Y Y Y N Y N* N* Y Y Y N Y N N N N N N N N
POLLY Y Y Y Y N Y Y N N Y N N Y N N N Y Y N N N N N N N
ATC Y
Code 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
IDL N N N N N N N N N N N N N N N N** N N N N N N N N N
KFR N N Y N N N Y N N Y N N N N N N** N N N N* N N N N N
POLLY N Y N Y N Y Y N Y Y N*** N N N N*** N** N N N** N N N N N N
ATC Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N N N N N N N N

Table 3. List of compiled GitHub GEMM codes by IDL, KernelFaRer and ATC. Codes labeled with N* means that the compiler
crashed, N** means that the compiler gave a false positive, and N*** that the compiler �nd at least one kernel but not all.

Code 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IDL Y N N N N N N N Y Y N N Y N N N
KFR Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
ATC Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Table 4. List of compiled synthetic GEMM codes by IDL,
KernelFaRer and ATC.

that ATC only achieves speedup for some programs, as the
overhead of the accelerator is sometimes to high to compen-
sate the speedup. When ATC detects that using the accelera-
tor will not be pro�table, it executes the program in the CPU.
Those cases can easily be identi�ed, because the speedup of
ATC is close to 1.0x, meaning that, in fact, the program ran
in the CPU. For the big matrix size, all the programs provide
excellent speedups, that range from 50x to 5000x.

Figure 9 shows the speedup of ATC and related work only
for the programs that were compiled by KernelFaRer and/or
IDL. We can see that...

0

20

40

60

80

100

%
of

p
ro
gr
am

s

IDL

KFR

POLLY

ATC

Figure 6. Percentage of matched) GEMM codes of IDL, Ker-
nelFaRer and ATC

9.3 Pro�tability accuracy
For simplicity, weworkwith squarematrices only, but identic
results can be obtained with non-squared matrices. Instead
of having only = to determine the crossover point, we would
have<, = and : , which can be reduced to >?B = < ⇤ = ⇤ : ,
representing the number of operations. Figure 11 shows the
predicted classes for the 50 GEMM programs, comparing the

8

Applied to Github linear algebra

Strassen and intrinsics

GitHub code in the wild: Also applied to tensor convolutions

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Conference’17, July 2017, Washington, DC, USA Anon.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

and IDL. ATC achieved a speedup of 15x compared to Kernel-
FaRer and IDL, given the fact that programs were executed
on the accelerator instead of the CPU.We also evaluated ATC
with di�erent convolutional codes from GitHub, compiling
70% of the codes.

This paper makes the following contributions:
• Presents ATC, a compiler for mapping matrix mul-
tiplication and convolutional programs to hardware
accelerators.

• Proposes a novel approach for detecting acceleratable
candidates using neural embeddings without the need
of having many programs to train the neural network.

• Details a novel architecture for predicting the perfor-
mance speedup of the accelerator with respect to the
host CPU depending on the input size at runtime.

The rest of the paper is organized as follows. Section 2
presents an easily understandable motivation example for
our work. The ATC compiler is presented in Section 4, where
we give an overview of the compiler architecture. Sections 5, 7
and 6 give the technical contributions of our paper. We eval-
uate our proposal in Section 9 and conclude the paper in
Section 11, also giving some hints for future work.

2 Motivation
2.1 Exisitng Match and replace
MOB have an example showing vanilla mxm in original source
code and how it is replaced with a cublas piece of code. High-
light variables to be matched etc. Bruce’s 2019 paper has some-
thing along these lines. The point is to showe the simple example
and then later we can motivate our more inclusive approach.
Below is some generic text based on this
We wish to detect linear algebra operations in user pro-

grams and replace them with an appropriate accelerator
library call. To illustrate this consider the code in left hand
column of �gure 1. This shows an example user program
fragment containing a straight-forward matrix multiplica-
tion.Wewish to detect this matrix-mutliplication and replace
it with a call to a cuBLAS libary shown on the right hand
side.

To replace code with an API call we have to both detect the
code performing a matix mulitplication and also determine
which user program variables correspond to the arguments
of the API call. Both KernelFire and IDL are able to detect
that the triple-nested loop is a matrix multipliation and can
deteremine the mapping between user variables and API
parameters. They achieve this by describing mxm via a set
of program and variable contrstints constraints over LLVM
IR.

MOB Have the GEMM IDL code from the paper here Figure
2 shows the IDL constraints describing GEMM. Here ForNest
=3 de�nes a triple loop nest and the variables src1,src2 and
update address corresponging to arrays C, A and B respec-
tively.

// P0 = A*(F - H);
msub(n, Ypitch , F, Ypitch , H, n, T);
mmult_fast(n, Xpitch , A, n, T, n, P[0]);

// P1 = (A + B)*H
madd(n, Xpitch , A, Xpitch , B, n, T);
mmult_fast(n, n, T, Ypitch , H, n, P[1]);

// P2 = (C + D)*E
madd(n, Xpitch , C, Xpitch , D, n, T);
mmult_fast(n, n, T, Ypitch , E, n, P[2]);
...

// Z upper left = (P3 + P4) + (P5 - P1)
madd(n, n, P[4], n, P[3], n, T);
msub(n, n, P[5], n, P[1], n, U);
madd(n, n, T, n, U, Zpitch , Z);

// Z lower left = P2 + P3
madd(n, n, P[2], n, P[3], Zpitch , Z + n*Zpitch);

// Z upper right = P0 + P1
madd(n, n, P[0], n, P[1], Zpitch , Z + n);

// Z lower right = (P0 + P4) - (P2 + P6)
madd(n, n, P[0], n, P[4], n, T);
madd(n, n, P[2], n, P[6], n, U);
msub(n, n, T, n, U, Zpitch , Z + n*(Zpitch + 1));

Listing 1.GEMMcode implementedwith Strassen algorithm
found on GitHub consisting of 200 lines of code.

__m256 vab00 = _mm256_setzero_ps ();
__m256 vab01 = _mm256_setzero_ps ();
...

for (int k = 0; k < K; k++) {
float pa = &A[lda * (k + i) + 0];
float pb = &B[ldb * (k + i) + 0];

__m256 vb0 = _mm256_load_ps(pb + 8 * 0);
__m256 vb1 = _mm256_load_ps(pb + 8 * 1);

__m256 va0 = _mm256_broadcast_ss (&pa[8 * i + 0]);
__m256 va1 = _mm256_broadcast_ss (&pa[8 * i + 1]);
...

vab00 = _mm256_fmadd_ps(va0 , vb0 , vab00);
vab01 = _mm256_fmadd_ps(va0 , vb1 , vab01);
...

}

__m256 vc00 = _mm256_load_ps(C + ldc * 0 + 8 * 0);
...
vc00 = _mm256_add_ps(vc00 , vab00);
...
_mm256_store_ps(C + ldc * 0 + 8 * 0, vc00);

Listing 2.GEMM code optimized for AVX2 found on GitHub
consisting of 350 lines of hand-optimized instinsics.

2.2 Examples of complex GEMM programs
Unfortunately in practice, user code can be complex and

both IDL and KernelFire fail to detect when using a con-
straint formulation. As an example, consider the code shown
in Figure 1, found on GitHub. Only a fragment of the 200
lines are shown here, which implements a Strassen gemm
algorithm. There is no loop structure and it is not clear which

2

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Conference’17, July 2017, Washington, DC, USA Anon.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

and IDL. ATC achieved a speedup of 15x compared to Kernel-
FaRer and IDL, given the fact that programs were executed
on the accelerator instead of the CPU.We also evaluated ATC
with di�erent convolutional codes from GitHub, compiling
70% of the codes.

This paper makes the following contributions:
• Presents ATC, a compiler for mapping matrix mul-
tiplication and convolutional programs to hardware
accelerators.

• Proposes a novel approach for detecting acceleratable
candidates using neural embeddings without the need
of having many programs to train the neural network.

• Details a novel architecture for predicting the perfor-
mance speedup of the accelerator with respect to the
host CPU depending on the input size at runtime.

The rest of the paper is organized as follows. Section 2
presents an easily understandable motivation example for
our work. The ATC compiler is presented in Section 4, where
we give an overview of the compiler architecture. Sections 5, 7
and 6 give the technical contributions of our paper. We eval-
uate our proposal in Section 9 and conclude the paper in
Section 11, also giving some hints for future work.

2 Motivation
2.1 Exisitng Match and replace
MOB have an example showing vanilla mxm in original source
code and how it is replaced with a cublas piece of code. High-
light variables to be matched etc. Bruce’s 2019 paper has some-
thing along these lines. The point is to showe the simple example
and then later we can motivate our more inclusive approach.
Below is some generic text based on this
We wish to detect linear algebra operations in user pro-

grams and replace them with an appropriate accelerator
library call. To illustrate this consider the code in left hand
column of �gure 1. This shows an example user program
fragment containing a straight-forward matrix multiplica-
tion.Wewish to detect this matrix-mutliplication and replace
it with a call to a cuBLAS libary shown on the right hand
side.

To replace code with an API call we have to both detect the
code performing a matix mulitplication and also determine
which user program variables correspond to the arguments
of the API call. Both KernelFire and IDL are able to detect
that the triple-nested loop is a matrix multipliation and can
deteremine the mapping between user variables and API
parameters. They achieve this by describing mxm via a set
of program and variable contrstints constraints over LLVM
IR.

MOB Have the GEMM IDL code from the paper here Figure
2 shows the IDL constraints describing GEMM. Here ForNest
=3 de�nes a triple loop nest and the variables src1,src2 and
update address corresponging to arrays C, A and B respec-
tively.

// P0 = A*(F - H);
msub(n, Ypitch , F, Ypitch , H, n, T);
mmult_fast(n, Xpitch , A, n, T, n, P[0]);

// P1 = (A + B)*H
madd(n, Xpitch , A, Xpitch , B, n, T);
mmult_fast(n, n, T, Ypitch , H, n, P[1]);

// P2 = (C + D)*E
madd(n, Xpitch , C, Xpitch , D, n, T);
mmult_fast(n, n, T, Ypitch , E, n, P[2]);
...

// Z upper left = (P3 + P4) + (P5 - P1)
madd(n, n, P[4], n, P[3], n, T);
msub(n, n, P[5], n, P[1], n, U);
madd(n, n, T, n, U, Zpitch , Z);

// Z lower left = P2 + P3
madd(n, n, P[2], n, P[3], Zpitch , Z + n*Zpitch);

// Z upper right = P0 + P1
madd(n, n, P[0], n, P[1], Zpitch , Z + n);

// Z lower right = (P0 + P4) - (P2 + P6)
madd(n, n, P[0], n, P[4], n, T);
madd(n, n, P[2], n, P[6], n, U);
msub(n, n, T, n, U, Zpitch , Z + n*(Zpitch + 1));

Listing 1.GEMMcode implementedwith Strassen algorithm
found on GitHub consisting of 200 lines of code.

__m256 vab00 = _mm256_setzero_ps ();
__m256 vab01 = _mm256_setzero_ps ();
...

for (int k = 0; k < K; k++) {
float pa = &A[lda * (k + i) + 0];
float pb = &B[ldb * (k + i) + 0];

__m256 vb0 = _mm256_load_ps(pb + 8 * 0);
__m256 vb1 = _mm256_load_ps(pb + 8 * 1);

__m256 va0 = _mm256_broadcast_ss (&pa[8 * i + 0]);
__m256 va1 = _mm256_broadcast_ss (&pa[8 * i + 1]);
...

vab00 = _mm256_fmadd_ps(va0 , vb0 , vab00);
vab01 = _mm256_fmadd_ps(va0 , vb1 , vab01);
...

}

__m256 vc00 = _mm256_load_ps(C + ldc * 0 + 8 * 0);
...
vc00 = _mm256_add_ps(vc00 , vab00);
...
_mm256_store_ps(C + ldc * 0 + 8 * 0, vc00);

Listing 2.GEMM code optimized for AVX2 found on GitHub
consisting of 350 lines of hand-optimized instinsics.

2.2 Examples of complex GEMM programs
Unfortunately in practice, user code can be complex and

both IDL and KernelFire fail to detect when using a con-
straint formulation. As an example, consider the code shown
in Figure 1, found on GitHub. Only a fragment of the 200
lines are shown here, which implements a Strassen gemm
algorithm. There is no loop structure and it is not clear which

2

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

CGO ’23, Montreal, Canada,
Anon.

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

Naive Naive p. Unrrolled Kernels Blocked Goto Strassen Intrinsics All
0

20

40

60

80

100

4

9

11
12

0

1

0

4

2

1

0

3

0 0 0

4

0

2

0

6

0 0 0

1

0 0 0

3

0 0 0

9

6

13
11

42

%
of

m
at
ch
ed

co
de
s

IDL POLLY

KFR ATC

Figure 8. Percentage of matched GEMM codes by di�erent techniques.

0

20

40

60

80

%
o
f
p
r
o
g
r
a
m
s Matched

Too many candidates

Missed matches

Figure 9. Percentage of matched GEMM codes by ATC di-
vided by failure reason.

them as GEMMs for API replacement. We show two bars
for KernelFaRer, which correspond to the strategy of GEMM
code with an optimized CPU implementation as described
in [20] and KFR (XPU) which is our extension, replacing the
CPU library with the optimized XPU implementation. IDL
directly targets the accelerator, while ATC chooses the CPU
or accelerator based on pro�tability analysis.

What is immediately clear is that detecting more GEMMs
leads to better overall speedup. In the Naive category, KFR
and ATC are both able to achieve good performance, with
a speedup of 726x and 1031x, respectively. The gap is nar-
rowed when using KFR (XPU). However, KFR is unable to
detect GEMMs in any other category leading to just an 6.2x
speedup overall while ATC achieves 344.0x. Unsurprisingly,
there is more performance available on naive sequential im-
plementations than those cases where the programmer has
spent e�ort in optimizing the program e.g., parallel, blocked
and intrinsics. Despite Strassens being algorithmicly more ef-
�cient, in practice acceleration gives signi�cant performance
improvement.

8.3 Candidate search complexity
One of the key challenges in matching code to APIs is search-
ing for program variables that map to API formal param-
eters. As the width of the API and complexity of the user

Parameter
Value
(mnk)

m Global
Accuracy

2000 4000 6000 8000 10000

111 100% 100% 100% 70.0% 100% 93.8%
123 100% 78.9% 100% 100% 100% 95.9%
312 100% 84.3% 100% 100% 100% 96.9%
136 100% 89.5% 100% 100% 100% 97.9%

Table 2. SVM accuracy for di�erent parameter values. 111
means m = 1 ⇥ m, n = 1 ⇥ m, k = 1 ⇥ m. 123 means m = 1 ⇥
m, n = 2 ⇥ m, k = 3 ⇥ m etc

program increase, this becomes combinatorialy expensive.
Figure 11 evaluates naive matching of variables and our ap-
proach based on the Levenshtein distance. Naive matching
varies considerably from just 4 candidates to over 1 million.
Our approach greatly reduces the number of candidates for
the majority of the programs. There are a few exceptions
(e.g.: 21, 37), where the number of candidates is already small,
where our approach is unable to improve.

There is one special case, code 23, where we reduce the
number of candidates, but it is still too high.

8.4 Pro�tability accuracy
To measure the accuracy of the SVM platform predictor, we
built a model o�ine and tested it on unseen data values.

Table 2 summarizes the SVM accuracy with di�erent input
sizes and shapes. The SVM achieves a global accuracy of
99.7%, where themisprediction occurs between< = 2000 and
< = 8000 which is the “edge” between the CPU and the XPU.
In all other intervals, the prediction is always correct. The
best accuracy is achieved with non-squared matrices, while
square matrices give slightly lower accuracy. In practice, the
classi�cation error has little impact on performance as shown
in Figure 12, where we plot the % of maximum performance
achievable with optimal platform selection. For< = 6400

8

- Detects GEMMs in over 80% of cases

- Dramatic improvement over other approaches

- Leads to significant performance improvement

- Tensor cores on NVIDIA

- Similar results for convolutions on Google TPUs

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

Matching linear algebra and tensor code to specialized hardware accelerators
CGO ’23, Montreal, Canada,

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

Naive Naive p. Unrrolled Kernels Blocked Goto Strassen Intrinsics All
1

10

100

1000

10000
S
p
ee
du

p

Figure 10. Geometric mean speedup obtained by IDL, KernelFaRer and ATC in GEMM programs with = = 8192.

5 10 15 20 25 30 35 40 45 50
1

101

102

103

104

105

106

Code

C
a
n
d
id
a
t
e
s
g
e
n
e
r
a
t
e
d

Naive

Heuristic

Threshold

Figure 11. Comparison of the number of candidates generated for matching matrix-multiplication codes: naive vs our approach.

2000 4000 6000 8000 10000
0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.0

m

S
p
e
e
d
u
p
w
.r
.t
O
r
a
c
le

Shape 111

Shape 123

Shape 312

Shape 136

Oracle

Figure 12. Percentage of speedup lost by ATC compared
to optimal switching between CPU and XPU depending on
matrix shapes.

the performance achieved drops to 84% of the maximum,
but otherwise achieves an average of 96%. The accuracy is
high when there is a signi�cant di�erence between XPU and
CPU performance. When accuracy drops, the relative cost
of mis-classi�cation is much lower.

Figure 13. Cross-validation accuracy with mean and stan-
dard deviation of the neural classi�er in terms of the number
examples per class when trained using a reduced version of
the OJClone dataset with GEMM and Convolution examples.

8.5 Neural Code Classi�cation
It takes only a relatively small number of examples (10 codes)
to build an e�fective classi�er.When applied to the 50 GEMM
and 50 non-GEMM programs (see Section 8.2) it was 100%
accurate in classi�cation.

9

[CC23]

Well known things

My view

Concrete results

Can we go further ?

Summary

5 approaches

Search using constraints over LLVM IR: IDL+CanDL [18-20]
- targetted APIs in C/Fortran - dense/sparse linear algebra

Black-box Program Synthesis [19-21]
- eliminated need for writing constraints

API matching via IO behavioural equivalence [21-23]
- more robust detection

Program Lifting [22-?]
- beyond APIs lifting to DSLs/MLIR

Neural Compilation [21-?]
- language to assembler translation using NMT/transformer

5 approaches to lifting

Beyond fixed function: Neural Compilation

Significant accelerators will be programmable

- Likely to have specialised prog lang

Accel

Code

DSL

Beyond fixed function: Neural Compilation

Significant accelerators will be programmable

- Likely to have specialised prog lang

Can we learn how to translate existing code into any new lang?

 - Automating compiler translation, construction

If so - enable language and architecture innovation

Translate
Accel

Code

DSL

Beyond fixed function: Neural Compilation

Exploit advances in NLP
- Neuro Machine Translation (NMT)

NMT: Transformer model
- supervised translation of natural languages

NMT can perform unsupervised translation
- ie automatically translate between existing languages

Beyond fixed function: Neural Compilation

Exploit advances in NLP
- Neuro Machine Translation (NMT)

NMT: Transformer model
- supervised translation of natural languages

NMT can perform unsupervised translation
- ie automatically translate between existing languages

Can we do this for programming languages?

If so - potentially automate construction of compilers between any
two languages

Let’s start with something “easy” supervised C->x86 compilation

Neural Compilation: C->x86 challenges

Neural Compilation: C->x86 challenges

Exact solutions are needed
- nearly correct un-acceptable
Difficult task for humans
- 50+ years of work
Sequence length
- difference in input/output
Training data
- where is it?
Evaluation

Neural Compilation: Train Seq2Seq C->x86

Results: Fib

Correct translation
- IO equivalent
- Does the same thing

Additional noop
-in ground truth
Additional moves
-in translation

Results: Search

Correct translation

Non- trivial
- Try doing this by hand!

Great that it can work
- but c.30% is far from practical
- so multi-modal training

 [AIPLANS@NeurIPS21]

Mult-lingual/modal translation

Transformer

C

I

O

S

Opt

T

<X> x1,x2.. xN </X> <Y> <mask> </Y> -> <mask> <END>

C

I

O

S

Opt

T

Build a multi-modal, multi-task model
Pose all tasks (including pre-training)
- with same format
- works multiple masks

C: C function, S,T: assemblers, I input example, O output example, Opt: optimise

Types of translation

Compilation C->s
Decompilation s->C
Program Synthesis I,O->C
Binary translation arm <-> x86
Binary Optimisation x86-> smaller x86
Evaluation C,I->O
Latent evaluation I,O,I->O

Zero -shot
- seen target but not direction in training
Zero++
- not seen targets
- eg arm -> smaller arm

Highly Preliminary Results

Compilation C->s: 56%
Decompilation s->C 27%
Program Synthesis I,O->C 21%

Evaluation C,I->O 47%
Latent evaluation I,O,I->O 39%

Currently
- training a larger model (1.5B+)

Using models to repair
- predict errors (lots of training data!)
- predict repair (using same/new model)

Uses ExeBench
- Expanded AnghaBench
[MachineProgramming22@PLDI]

GitHub C code
- Executable code
- IO examples (autogen)

Highly Preliminary Results

Compilation C->s: 56%
Decompilation s->C 27%
Program Synthesis I,O->C 21%

Evaluation C,I->O 47%
Latent evaluation I,O,I->O 39%

Currently
- training a larger model (1.5B+)

Using models to repair
- predict errors (lots of training data!)
- predict repair (using same/new model)

Uses ExeBench
- Expanded AnghaBench
[MachineProgramming22@PLDI]

GitHub C code
- Executable code
- IO examples (autogen)

Conclusion
Program

Matching Hardware to Software
- enables hardware innovation

Program synthesis and code matching
- big step acceleration

Going beyond simple acceleration requires new approaches
-compilation as neural machine translation

P

P
P

P

IDL

Conclusion
Program

Matching Hardware to Software
- enables hardware innovation

Program synthesis and code matching
- big step acceleration

Going beyond simple acceleration requires new approaches
-compilation as neural machine translation

P

P
P

P

IDL

New technologies + endless automation = bridging software/hardware gap

