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Challenges of Mixed-Criticality Systems

Thermal 
Management

Mixed-Criticality Systems
• Integrate tasks of different safety integrity levels (SILs)
 Common platform reduces cost, power, space…
 Require isolation of SILs

1. Architectural Resources
• Interference via cores, memory, etc.
 Virtualization techniques

2. Thermal Manager
• Thermal coupling of neighboring cores
 ?

How can we limit the thermal interference between SILs?
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State-of-the-Art Thermal Management
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Reactive Thermal 
Management

Intel‘s Turbo Boost [1]

• Change frequency based on current 
temperature and power consumption

• Are not predictable

 Fully utilize thermal headroom 

 Cannot give timing guarantees for 
safety-critical tasksAMD‘s Turbo Core
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State-of-the-Art Thermal Management
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Proactive Thermal 
Management

• Assign thermally safe power budgets
• Rely on maximal power consumption

 Predictable execution times

 Overly pessimistic if power 
consumption shows high variance

Thermal Safe Power (TSP) [2]

PdRM [3]
GDP [4]
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Safari et al. [6]

Ranjbar et al. [5]



State-of-the-Art Thermal Management
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Proactive Thermal 
Management

Thermal Safe Power (TSP) [2]

PdRM [3]
GDP [4]

Reactive Thermal 
Management

Intel‘s Turbo Boost [1]

AMD‘s Turbo Core

 Reactive thermal management for best-effort tasks
 Proactive thermal management for safety-critical tasks
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Safari et al. [6]

Ranjbar et al. [5]

Monitoring-based
Thermal Management



Contributions

MonTM: A decentralized thermal management strategy
• Prevents best-effort tasks from inducing thermal violations into safety-

critical tasks

Light-weight DTM interconnect
• Enable DTMs to communicate thermal status

Slack Monitor
• Statically assigned V/f levels of safety-critical tasks may be 

pessimistic if they run faster than WCET
• Determines minimal V/f requirement based on slack
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Problem Formulation
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Floorplan
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Safety-Critical Tasks
• Service Level Agreements (SLAs)

- Deadline 
- WCET 
- Exclusive resource, i.e. core

Best-Effort Tasks
• No service level agreements (SLAs)

Objective 
• Minimize the latency of best-effort jobs s.t.

- All critical jobs meet their deadline
- Thermal requirements of all cores are satisfied



Thermal Management Strategy
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Floorplan
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Safety-Critical Tasks
• Service Level Agreements (SLAs)

- Deadline 
- WCET 
- Exclusive resource, i.e. core

Best-Effort Tasks
• No service level agreements (SLAs)
• Must not induce thermal violations in safety-critical tasks



Thermal Pre-error Interconnect
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Thermal Pre-error Interconnect
• Communicates imminent thermal violations of 

safety-critical tasks
• Supports four pre-error levels

-   no action
-   throttle in hop distance of 1
-   throttle in hop distance of 2
-   halt all best-effort tasks



Comparison to State of the Art (1)
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Evaluation Setup
• FPGA prototype of 80-core processor
• Per-core power, temperature emulation 
• DVFS emulation with 2  locktime

Synthetic Workloads: <>_<>_<>
• Variance of maximal power consumption
- Low 
- Mid 
- High 

• Number of safety-critical tasks 
• Number of best-effort tasks 



Comparison to State of the Art (2)
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Execution times 
 Increase with system load



Comparison to State of the Art (3)
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Execution times
 Increase with system load
 Improvement increases with 

variance in power consumption



Comparison to State of the Art (4)
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Execution times 
 Increase with system load
 Improvement increases with 

variance in power consumption

 7-44% improvement without 
slack monitor

 Additional 1-6% improvement 
with slack monitor



Conclusion

Monitoring-based thermal management

• Thermal pre-error interconnect

 Communicates imminent thermal violations

 Provides sufficient thermal isolation

• Slack monitor

 Safely reduce the frequency of safety-critical tasks

 Reduces run-time of best-effort tasks by up to 45%
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Questions?

Thermal 
Management
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Thermal Pre-error Interconnect
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Thermal Pre-error Interconnect
• Communicates imminent thermal violations of 

safety-critical tasks
• Supports four pre-error levels

-   no action
-   throttle in hop distance of 1
-   throttle in hop distance of 2
-   halt all best-effort tasks

Routers at safety-critical tasks

Other routers



Thermal Pre-error Interconnect – Example (1)
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0 0 0

0 0 0

0 0 0

0 0 0

0

0

0

0

State t=0
• No best-effort tasks launched yet

Routers at safety-critical task

Other routers



Thermal Pre-error Interconnect – Example (2)
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0

0

0

State t=1
• Launch 3 best-effort tasks
• Thermal coupling results in a 

thermal pre-error 

Routers at safety-critical task

Other routers
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Thermal Pre-error Interconnect – Example (3)
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0 0 0

0 0 0

1 1 0

1 1 1

0

0

0

0

State t=2
• Router broadcasts thermal pre-

error

Routers at safety-critical task

Other routers
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Thermal Pre-error Interconnect – Example (4)
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0

0

0

0

State t=2
• Router broadcasts thermal pre-

error

Routers at safety-critical task

Other routers



Thermal Pre-error Interconnect – Example (5)
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State t=2
• Router broadcasts thermal pre-

error

Routers at safety-critical task

Other routers



Thermal Pre-error Interconnect – Example (6)
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0

0

State t=2
• Router broadcasts thermal pre-

error

Routers at safety-critical task

Other routers



Hardware Overhead
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Slice LUTs Slice Registers

Absolute Relative Absolute Relative

Router 101 < 0.1% 208 0.2%

Thermal Manager 70 < 0.1% 60 < 0.1%

Slack Monitor 1,465 1.0% 3,176 3.3%

Probe 356 0.2% 830 0.9%

Total 1,997 1.3% 4274 4.4%



Slack Monitor
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Control Flow Graph (CFG)

100 ms

80 ms

10 ms

20 ms

Floorplan

Critical Tasks
• Static V/f levels are assigned based on WCET
• If task finishes faster, static V/f levels are overly pessimistic

• Run-time Monitoring
- Identify basic blocks in CFG
- Map basic block to remaining WCET 

 Boosts best-effort tasks by an increased thermal 
headroom



Implementation of Slack Monitor
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Detectors

WCET
LUT

Timer

Divider
V/f level

LUT

Core
Instruction

Trace

Event

Rem.
WCET

Rem.
Timer

𝑓 𝑡𝑎𝑟𝑔𝑒𝑡
Min 

V/f level
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Benchmark Generation

Terminal 
Statement

Expansion 
Statement

Simple arithmetic statement, e.g. variable assignment

Expandable frame of statements e.g. if or loop clauses

Expansion 
Statement

Terminal
Statement

Terminal
Statement

Terminal
Statement

[1] Jozo Dujmović. 2010. Automatic generation of benchmark and test workloads. In Proceedings of the first joint WOSP/SIPEW international conference on 
Performance engineering (WOSP/SIPEW '10). Association for Computing Machinery, New York, NY, USA, 263–274. DOI:https://doi.org/10.1145/1712605.1712654 

Recursive Expansion (REX) Process [1] using
•  maximal level of nesting (depth)
•  number of statements per code block (breadth)

𝐷

𝐵
int main(){
    int data[100] = rand();

    if (data[1] > data[3) {
        // code block
    }

    data[2]= data[4] /data[9];
    
    return 0;
}

Mettler et al. | An FPGA-based Evaluation Appraoch for Resource Management Strategies
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Benchmark Generation

Terminal 
Statement

Expansion 
Statement

Simple arithmetic statement 

Expandable frame of statements e.g. if or loop clauses

Expansion 
Statement

Terminal
Statement

Terminal
Statement

Terminal
Statement

[1] Jozo Dujmović. 2010. Automatic generation of benchmark and test workloads. In Proceedings of the first joint WOSP/SIPEW international conference on 
Performance engineering (WOSP/SIPEW '10). Association for Computing Machinery, New York, NY, USA, 263–274. DOI:https://doi.org/10.1145/1712605.1712654 

Recursive Expansion (REX) Process [1] using
•  maximal level of nesting (depth)
•  number of statements per code block (breadth)
•  memory size on which the application operates
•  probability to use floating-point arithmetic 𝐷

𝐵
int main(){
    int data[] = rand();
    if (data[1] > data[3] {
        // code block
    }

    data[2]= data[4] /data[9];
    
    return 0;
}

Mettler et al. | An FPGA-based Evaluation Appraoch for Resource Management Strategies
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