
Challenges and Opportunities in 
C/C++ Source-to-Source 
Compilation

João Bispo (jbispo@fe.up.pt)
Nuno Paulino (nuno.m.paulino@inesctec.pt)
Luís Miguel Sousa (lm.sousa@fe.up.pt)



Outline

> Motivation

> Challenges

> Opportunities

> Examples

2



Compiler

> Translates code written in one language to another one

> Programming language to machine code/executable

• gcc, clang, etc.

> Optimizing compiler

• Not only translates, but also transforms the code

3



Source-to-Source Compiler

> Translates a high-level programming language to another high-level programming 
language

• Often, the same language! (e.g., C to C)

> Useful for instrumentation, static analysis, code generation…

> Commonly used in certain application areas 

• JavaScript transpilers (e.g. TypeScript)

4



Compiler Research

> Traditional compiler tools

> Established and mature approach

> Low-level IRs 

• GIMPL, LLVM-IR

> Catalogue of existing transformations

5



Compiler Research - Challenges

> Some information might be lost (e.g. comments, high-level structures, loops)

> High-learning curve

> Impractical distribution

> Keep up with new compiler versions

> Compiler lock-in (aggravated in fragmented environments, e.g. embedded)

6



Source-to-Source Compiler - Motivation

> Some information might be lost (e.g. comments, high-level structures, loops)

Keep all source code information

> High-learning curve

> Impractical distribution

> Keep up with new compiler versions

> Compiler lock-in (aggravated in fragmented environments, e.g. embedded)

7



Source-to-Source Compiler - Motivation

> Some information might be lost (e.g. comments, high-level structures, loops)

Keep all source code information

> High-learning curve

DSLs/APIs over AST or similar structures

> Impractical distribution

> Keep up with new compiler versions

> Compiler lock-in (aggravated in fragmented environments, e.g. embedded)

8



Source-to-Source Compiler - Motivation

> Some information might be lost (e.g. comments, high-level structures, loops)

Keep all source code information

> High-learning curve

DSLs/APIs over AST or similar structures

> Impractical distribution

Just another, separate tool

> Keep up with new compiler versions

> Compiler lock-in (aggravated in fragmented environments, e.g. embedded)

9



Source-to-Source Compiler - Motivation

> Some information might be lost (e.g. comments, high-level structures, loops)

Keep all source code information

> High-learning curve

DSLs/APIs over AST or similar structures

> Impractical distribution

Just another, separate tool

> Keep up with new compiler versions

Source-code as the interface

> Compiler lock-in (aggravated in fragmented environments, e.g. embedded)

10



Source-to-Source Compiler - Motivation

> Some information might be lost (e.g. comments, high-level structures, loops)

Keep all source code information

> High-learning curve

DSLs/APIs over AST or similar structures

> Impractical distribution

Just another, separate tool

> Keep up with new compiler versions

Source-code as the interface

> Compiler lock-in (aggravated in fragmented environments, e.g. embedded)

Compatible with any compiler that accepts the language

11



Challenges in Source-to-Source Compilation

> Limited support for the input languages

> Integration with existing toolchains

> Unintended interactions with the compiler

> Limitations in source code as an IR

> Competing technologies

12



Challenges - Limited support for the input languages

> Common for S2S tools to implement custom parsers

13



Challenges - Limited support for the input languages

> Common for S2S tools to implement custom parsers

14



Challenges - Limited support for the input languages

> Common for C/C++ S2S tools to implement custom parsers

> C and C++ are complex languages

• Still in active development

• Preprocessor/templates

> Usually only support a limited subset

• E.g. ANSI C

15



Challenges - Integration with existing toolchains

> Current C/C++ toolchains do not expect a source-to-source step

> Increased difficulties in development, debugging

> Limited concept of Source Maps

16



Challenges - Unintended interactions with the compiler

> Sometimes unclear how changes at a high-level affect compiled code

> Example: replacing operations with library calls1

• Prevents compiler optimizations

> Example: polyhedral loop optimizations2

• Transformations interfere with SSA

• Applied before all other optimizations (e.g. inlining)

1 Christophe Denis, Pablo De Oliveira Castro, and Eric Petit. Verificarlo: Checking floating point accuracy through monte carlo arithmetic. arXiv preprint 
arXiv:1509.01347, 2015.

2 Michael Kruse and Tobias Grosser. Delicm: scalar dependence removal at zero memory cost. In Proceedings of the 2018 International Symposium on 
Code Generation and Optimization, pages 241–253, 2018. 17



Challenges - Limitations in source code as an IR

> C/C++ source-to-source compilers according to transformations

• Text-based

• IR-based

> Text-based: preserve original source-code

> IR-based: traditional compiler passes, but over C/C++

> Parsimony in low-level IRs help analysis and transformations

• C and C++ much more complex in comparison

18



Challenges - Limitations in source code as an IR

19



Challenges - Competing technologies

> MLIR

• Addresses some LLVM-IR shortcomings

• Framework for building compilers

> Strong focus on:

• Moving between abstraction levels within the same IR

• Reusing compiler passes

> MLIR as a source-to-source competitor

• Preferential direction is lowering, but recent works address raising

• Starting point mainly DSLs, but increased interest in C/C++

20



Opportunities in Source-to-Source Compilation

> Reuse of existing parsers as-is

> Improved composability and compatibility

> Widening the scope and taming complexity

> Testing and Prototyping Environments

> Make compilers in general more accessible

21



Opportunities - Reuse of existing parsers as-is

> Parsing C and C++ should be offloaded to 3rd party libraries

• Preferably without modifications

• Seriously consider if a custom parser is needed

> Examples

• EDG (ROSE)

• Clang (Insieme, Artisan, Clava)

22



Opportunities - Improved composability and compatibility

> Source language as the interface

• Natural integration in current C and C++ toolchains

• Source-to-source compilers can be interchangeable and mixed together

> Compiler as an interpreter, instead of a framework

• Extensions based on external APIs

• Improved distribuiton and reuse

• Lower entry barrier

23



Opportunities - Improved composability and compatibility

24



Opportunities - Widening the scope and taming complexity

> Human-level use cases

• What a human programmer would do

• E.g., loop transformations, array flattening

> Compiler-level use cases

• Sequence of compiler passes

• Code can go directly to compiler

> Not mutually exclusive

• Compiler-level to extract information, human-level to apply it

25



Opportunities - Testing and Prototyping Environments

> Testing environment

• Source-to-source usually the first step in the tool-chain

• Allows complete flows (parsing, compiling, execution) within same script

• Natural fit for Design-Space Exploration (DSE)

> Prototyping environment

• Assuming a mature environment and compiler-level transformations

• Prototype as source-to-source before traditional compiler implementation

26



Opportunities - Make compilers in general more accessible

> Previous opportunities can be applied to traditional compiler approach

> MLIR

• Compiler framework (vs interpreter)

• Programmed in C++

> Interest in addressing this!

• Python bindings for MLIR manipulation

• MLIR as a framework for creating source-to-source compilers?

27



Examples

> AutoPar - Automatic Parallelisation of for Loops

> Inline Assembly Insertion - RISC-V Custom Extensions

28



AutoPar - Automatic Parallelisation of for Loops

> AutoPar: Clava library for auto parallelization of C code

• Statically analyses and inserts OpenMP pragmas

• Automatic, no user effort

• Developed by Hamid Arabnejad, SPeCS Lab post-doc researcher

for(int i = 0; i < numIter; i++) {     
a += i;

}

Language: C

29

https://specs-feup.github.io/clava/api/clava.autopar.Parallelize.html


AutoPar - Automatic Parallelisation of for Loops

> AutoPar: Clava library for auto parallelization of C code

• Statically analyses and inserts OpenMP pragmas

• Automatic, no user effort

• Developed by Hamid Arabnejad, SPeCS Lab post-doc researcher

#pragma omp parallel for default(shared) firstprivate(numIter) reduction(+ : a)
for(int i = 0; i < numIter; i++) {     

a += i;
}

Language: C

30

https://specs-feup.github.io/clava/api/clava.autopar.Parallelize.html


AutoPar - Automatic Parallelisation of for Loops

> Experiments:

• NAS – 2×

• PolyBench – 8.6× (8 threads, XL)

• Himeno – 10× (16 threads) 

#pragma omp parallel for default(shared) firstprivate(numIter) reduction(+ : a)
for(int i = 0; i < numIter; i++) {     

a += i;
}

Language: C

31



Prototyping RISC-V Custom Instructions

> RISC-V Processor

• Open standard ISA

• Designed to support customization

> Testing custom instructions

• Either manual insertion of assembly in C code (i.e. asm)

• Or add support in a traditional compiler toolchain (e.g. gcc, clang)

• Minimum: assembler that supports custom instructions

> Intermediate approach

• Automatically insert assembly in C code using source-to-source compilation

32



Prototyping RISC-V Custom Instructions

> Progressive lowering of C code, until UVE code generation

> Example: Compound Assignment Unfolding

33



Prototyping RISC-V Custom Instructions

34



The End

> Clava GitHub: https://github.com/specs-feup/clava

• Has link to tutorial

> Clava web demo: https://specs.fe.up.pt/tools/clava/

> Contact: jbispo@fe.up.pt

THANKS!

35

https://github.com/specs-feup/clava
https://specs.fe.up.pt/tools/clava/
mailto:jbispo@fe.up.pt

