
RUST-Encoded Stream Ciphers on a
RISC-V Parallel Ultra-Low-Power Processor

Francesco Barchi, Giacomo Pasini, Emanuele Parisi, Giuseppe Tagliavini,
Andrea Bartolini, Andrea Acquaviva

PARMA-DITAM 23

Outilne

• Introduction
• Background
• Method
• Results

Introduction

Cyber-Physical Systems (CPS) challenges have become increasingly
evident in these last years.

This was possible through the contribution of new powerful and energy efficient:
• Systems of Chips (SoC)
• Communication Wireless technologies (e.g., NB-IoT, 5G)

Growing complexity of these devices Increasingly interconnected

Able to act and manipulate the surrounding reality

Gartner® Hype Cycle™ for Cyber Risk Management, 2022:

• CPSs are reaching the peak of inflated expectations.
• Katell Thielemann describes CPS as «Engineered systems that

orchestrate sensing, computation, control, networking and
analytics to interact with the physical world.»

• Inflated expectations: « … phase of overenthusiasm and
unrealistic projections … well-publicized activity by technology
leaders results in some successes ….»

• CPS risk management is an innovation trigger; it started its
ascent among the potentially relevant topics for the next
five years.

Source: Gartner (July 2022)

Introduction

The risk management of CPSs is a complex topic.
Among other things, it relies on the software and hardware security employed in
developing the system. In our vision, we have two major fields of research that

contribute orthogonally to improving security:

Introduction

The risk management of CPSs is a complex topic.
Among other things, it relies on the software and hardware security employed in
developing the system. In our vision, we have two major fields of research that

contribute orthogonally to improving security:

Open Instruction Set

Architecture
Memory

Sa
fety

in

Progra
mming

La
ngu

age
s

Introduction

The risk management of CPSs is a complex topic.
Among other things, it relies on the software and hardware security employed in
developing the system. In our vision, we have two major fields of research that

contribute orthogonally to improving security:

Open Instruction Set

Architecture
Memory

Sa
fety

in

Progra
mming

La
ngu

age
s

An open ISA (Instruction Set Architecture) contributes to the development of more security in system-on-chips:
• It allows for greater transparency and collaboration in the development and review process.
• The design and implementation of the ISA can be examined and audited by a larger community, making it more likely that

any vulnerabilities or weaknesses will be discovered and addressed.
• Open source allows for implementing security features and protocols that may not be present in proprietary ISAs.

Introduction

The risk management of CPSs is a complex topic.
Among other things, it relies on the software and hardware security employed in
developing the system. In our vision, we have two major fields of research that

contribute orthogonally to improving security:

Memory safety in a programming language contributes to the development of more security in CPS, preventing common
programming errors that can lead to security vulnerabilities.

• Buffer overflow prevention: a common source of security vulnerabilities. Bounds checking ensures that data is written
only to the memory allocated.

• Pointer safety: preventing common programming errors such as null pointer dereferences and use-after-free bugs.
• Memory leak prevention: Memory safety features ensure that memory is properly allocated and freed, preventing

memory leaks and ensuring that the system does not run out of memory.

Open Instruction Set

Architecture
Memory

Sa
fety

in

Progra
mming

La
ngu

age
s

Introduction

RISC-V is an open-source ISA:
• Transparency and collaboration in the development

and review process
• Customisable: allows for implementing security

features and protocols that may not be present in
proprietary ISAs.

The risk management of CPSs is a complex topic.
Among other things, it relies on the software and hardware security employed in
developing the system. In our vision, we have two major fields of research that

contribute orthogonally to improving security:

Open Instruction Set

Architecture
Memory

Sa
fety

in

Progra
mming

La
ngu

age
s

Introduction

RISC-V is an open-source ISA:
• Transparency and collaboration in the development

and review process
• Customisable: allows for implementing security

features and protocols that may not be present in
proprietary ISAs.

The risk management of CPSs is a complex topic.
Among other things, it relies on the software and hardware security employed in
developing the system. In our vision, we have two major fields of research that

contribute orthogonally to improving security:

Open Instruction Set

Architecture
Memory

Sa
fety

in

Progra
mming

La
ngu

age
s

RUST was designed with security in mind.
It catches the majority of memory mistakes
at compile time.
• Avoid undefined behaviour
• Avoid memory corruption

Introduction

The risk management of CPSs is a complex topic.
Among other things, it relies on the software and hardware security employed in
developing the system. In our vision, we have two major fields of research that

contribute orthogonally to improving security:

Open Instruction Set

Architecture
Memory

Sa
fety

in

Progra
mming

La
ngu

age
s

In this work, we face the interoperability challenge of compiling and executing RUST-encoded software in
an existing RISC-V platform: GreenWaves’ GAP8. This SoC is a parallel ultra-low-power (PULP) system

composed of a cluster in a chip.

RustCrypto/stream-ciphers

Introduction

CP
S

Cr
az

yf
lie

AI
-D

ec
k

Encrypt video stream using a RUST library

RISC-V SoC

Ex
am

pl
e

ap
pl

ic
at

io
n

En
cr

yp
te

d
vi

de
o

su
rv

ei
lla

nc
e

in
 m

ic
ro

-U
AV

We developed a framework to integrate the RUST library
into an existing software/hardware ecosystem. A use-case
scenario is encrypted video surveillance in micro-UAV

Introduction

Outilne

• Introduction
• Background
• Hardware: PULP and GAP8
• Language: RUST and RUST for embedded devices
• Software: Stream ciphers and Chacha20

• Method
• Results

PULP and GAP8

APB

CL
K

TI
M

ER

DE
BU

GSPI M

CAMIF

I2C

UART

µD
M

A
DEBUG

ROM

Logarithmic Interconnect

RISC-VAP
BGPIO

I2S

SDIO EV
EN

T

So
C

CT
RL

IN
TC

ACCEL

Pa
d

Co
nt

ro
l

L2
BankL2

BankL2
BankL2

Bank
L2

Bank
L2

Bank

private banks

Int
erl

ea
ved

 ba
nks

GAP8 is a commercially available SoC based on PULP, a platform
composed of a RISC-V core (RI5CY) and a Cluster to implement a
Shared-Memory parallel programming model.

Cluster

D
at

a
AX

I B
us

Instruction AXI Bus

APB

CL
K

TI
M

ER

DE
BU

GSPI M

CAMIF

I2C

UART

µD
M

A
DEBUG

ROM

Logarithmic Interconnect

RISC-VAP
BGPIO

I2S

SDIO EV
EN

T

So
C

CT
RL

IN
TC

ACCEL

Pa
d

Co
nt

ro
l

L2
BankL2

BankL2
BankL2

Bank
L2

Bank
L2

Bank

private banks

Int
erl

ea
ved

 ba
nks

Target a Shared-Memory parallel programming model:
• From 4 to 16 additional cores sharing directly a Shared Memory

(a Tightly Coupled Data Mem (TCDM) or L1)

RISC-V RISC-V RISC-V RISC-V

Shared Memory

…

D
at

a
AX

I B
us

Instruction AXI Bus

PULP and GAP8

APB

CL
K

TI
M

ER

DE
BU

GSPI M

CAMIF

I2C

UART

µD
M

A
DEBUG

ROM

Logarithmic Interconnect

RISC-VAP
BGPIO

I2S

SDIO EV
EN

T

So
C

CT
RL

IN
TC

ACCEL

Pa
d

Co
nt

ro
l

L2
BankL2

BankL2
BankL2

Bank
L2

Bank
L2

Bank

private banks

Int
erl

ea
ved

 ba
nks

RISC-V RISC-V RISC-V RISC-V…

TCDM Logarithmic Interconnect

SRAM SRAM SRAM SRAM SRAM SRAM SRAM SRAM…

D
at

a
AX

I B
us

Instruction AXI Bus

Target a Shared-Memory parallel programming model:
• Organizing the memory in Multiple Banks we obtain

concurrent access

PULP and GAP8

Cluster

APB

CL
K

TI
M

ER

DE
BU

GSPI M

CAMIF

I2C

UART

µD
M

A
DEBUG

ROM

Logarithmic Interconnect

RISC-VAP
BGPIO

I2S

SDIO EV
EN

T

So
C

CT
RL

IN
TC

ACCEL

Pa
d

Co
nt

ro
l

L2
BankL2

BankL2
BankL2

Bank
L2

Bank
L2

Bank

private banks

Int
erl

ea
ved

 ba
nks

RISC-V RISC-V RISC-V RISC-V…

TCDM Logarithmic Interconnect

SRAM SRAM SRAM SRAM SRAM SRAM SRAM SRAM…

Shared
Instruction Cache

D
at

a
AX

I B
us

DMA

Instruction AXI Bus

L0 L0 L0 L0

Target a Shared-Memory parallel programming model:
• Data movement is fully software-managed exploiting a DMA

PULP and GAP8

PULP and GAP8

APB

CL
K

TI
M

ER

DE
BU

GSPI M

CAMIF

I2C

UART

µD
M

A
DEBUG

ROM

Logarithmic Interconnect
AP

BGPIO

I2S

SDIO EV
EN

T

So
C

CT
RL

IN
TC

ACCEL

Pa
d

Co
nt

ro
l

L2
BankL2

BankL2
BankL2

Bank
Int

erl
ea

ved
 ba

nks

L2
Bank

L2
Bank

private banks

D
at

a
AX

I B
us

TCDM Logarithmic InterconnectDMA

Instruction AXI Bus

RISC-V RISC-V RISC-V RISC-V

Shared
Instruction Cache

L0 L0 L0 L0

SRAM SRAM SRAM SRAM SRAM SRAM SRAM SRAM

Fabric
Controller
Thread

By default the cluster is inactive and clock-gated at
boot: a single thread runs on the Fabric Controller

…

…

PULP and GAP8

APB

CL
K

TI
M

ER

DE
BU

GSPI M

CAMIF

I2C

UART

µD
M

A
DEBUG

ROM

Logarithmic Interconnect
AP

BGPIO

I2S

SDIO EV
EN

T

So
C

CT
RL

IN
TC

ACCEL

Pa
d

Co
nt

ro
l

L2
BankL2

BankL2
BankL2

Bank
Int

erl
ea

ved
 ba

nks

L2
Bank

L2
Bank

private banks

D
at

a
AX

I B
us

TCDM Logarithmic InterconnectDMA

Instruction AXI Bus

RISC-V RISC-V RISC-V RISC-V

Shared
Instruction Cache

L0 L0 L0 L0

SRAM SRAM SRAM SRAM SRAM SRAM SRAM SRAM

Fabric
Controller
Thread

Core 0
Thread

Step1: Mount the cluster (enabling the clock) and call a
function on the cluster core 0

…

…

PULP and GAP8

APB

CL
K

TI
M

ER

DE
BU

GSPI M

CAMIF

I2C

UART

µD
M

A
DEBUG

ROM

Logarithmic Interconnect
AP

BGPIO

I2S

SDIO EV
EN

T

So
C

CT
RL

IN
TC

ACCEL

Pa
d

Co
nt

ro
l

L2
BankL2

BankL2
BankL2

Bank
Int

erl
ea

ved
 ba

nks

L2
Bank

L2
Bank

private banks

D
at

a
AX

I B
us

TCDM Logarithmic InterconnectDMA

Instruction AXI Bus

RISC-V RISC-V RISC-V RISC-V

Shared
Instruction Cache

L0 L0 L0 L0

SRAM SRAM SRAM SRAM SRAM SRAM SRAM SRAM

HW
Synch

Fabric
Controller
Thread

Core 0
Thread

Step2: Fork an execution team on multiple cluster cores; they
can be synchronised with barriers, critical sections

PULP and GAP8

APB

CL
K

TI
M

ER

DE
BU

GSPI M

CAMIF

I2C

UART

µD
M

A
DEBUG

ROM

Logarithmic Interconnect
AP

BGPIO

I2S

SDIO EV
EN

T

So
C

CT
RL

IN
TC

ACCEL

Pa
d

Co
nt

ro
l

L2
BankL2

BankL2
BankL2

Bank
Int

erl
ea

ved
 ba

nks

L2
Bank

L2
Bank

private banks

D
at

a
AX

I B
us

TCDM Logarithmic InterconnectDMA

Instruction AXI Bus

RISC-V RISC-V RISC-V RISC-V

Shared
Instruction Cache

L0 L0 L0 L0

SRAM SRAM SRAM SRAM SRAM SRAM SRAM SRAM

HW
Synch

Fabric
Controller
Thread

Core 0
Thread

All code is in L2 memory (cached for cluster threads)

ROML2
Bank

L2
Bank

Shared
Instruction Cache

PULP and GAP8

APB

CL
K

TI
M

ER

DE
BU

GSPI M

CAMIF

I2C

UART

µD
M

A
DEBUG

ROM

Logarithmic Interconnect
AP

BGPIO

I2S

SDIO EV
EN

T

So
C

CT
RL

IN
TC

ACCEL

Pa
d

Co
nt

ro
l

L2
BankL2

BankL2
BankL2

Bank
Int

erl
ea

ved
 ba

nks

L2
Bank

L2
Bank

private banks

D
at

a
AX

I B
us

TCDM Logarithmic InterconnectDMA

Instruction AXI Bus

RISC-V RISC-V RISC-V RISC-V

Shared
Instruction Cache

L0 L0 L0 L0

SRAM SRAM SRAM SRAM SRAM SRAM SRAM SRAM

HW
Synch

Fabric
Controller
Thread

Core 0
Thread

Stacks are in L2 for the FC and in L1 TCDM for the cluster
cores (no cached!)

L2
Bank

L2
Bank

SRAM SRAM SRAM SRAM SRAM SRAM SRAM SRAM

Outilne

• Introduction
• Background
• Hardware: PULP and GAP8
• Language: RUST and RUST for embedded devices
• Software: Stream ciphers and Chacha20

• Method
• Results

RUST
Rust is a programming language that was designed with
security in mind.
Several RUST features help to make it more difficult for
developers to introduce vulnerabilities into their code:

• Ownership and Borrow: Rust’s strict ownership model
and the borrow checker prevents common
programming errors such as buffer overflows and use-
after-free issues.

• Type safety: Rust’s type system helps prevent type
confusion bugs, a common source of security
vulnerabilities.

• Concurrency safety: Rust's approach to concurrency is
designed to prevent data race conditions, which can
lead to security vulnerabilities.

• Error handling: Rust has a built-in approach to error
handling, avoiding undefined behaviours.

RUST
Rust is a programming language that was designed with
security in mind.
Several RUST features help to make it more difficult for
developers to introduce vulnerabilities into their code:

• Ownership and Borrow: Rust’s strict ownership model
and the borrow checker prevents common
programming errors such as buffer overflows and use-
after-free issues.

• Type safety: Rust’s type system helps prevent type
confusion bugs, a common source of security
vulnerabilities.

• Concurrency safety: Rust's approach to concurrency is
designed to prevent data race conditions, which can
lead to security vulnerabilities.

• Error handling: Rust has a built-in approach to error
handling, avoiding undefined behaviours.

let s1 = String::from("hello");
let s2 = s1;
println!("{}, world!", s1);

error[E0382]: borrow of moved value: `s1`

fn main() {
let s = String::from("hello");
change(&s);

}
fn change(some_string: &String) {

some_string.push_str(", world");
}

error[E0596]: cannot borrow
`*some_string` as mutable, as it is behind
a `&` reference

RUST
Rust is a programming language that was designed with
security in mind.
Several RUST features help to make it more difficult for
developers to introduce vulnerabilities into their code:

• Ownership and Borrow: Rust’s strict ownership model
and the borrow checker prevents common
programming errors such as buffer overflows and use-
after-free issues.

• Type safety: Rust’s type system helps prevent type
confusion bugs, a common source of security
vulnerabilities.

• Concurrency safety: Rust's approach to concurrency is
designed to prevent data race conditions, which can
lead to security vulnerabilities.

• Error handling: Rust has a built-in approach to error
handling, avoiding undefined behaviours.

let mut s = String::from("hello");
let r1 = &mut s;
let r2 = &mut s;
println!("{}, {}", r1, r2);

error[E0499]: cannot borrow `s` as
mutable more than once at a time

fn main() {
let reference_to_nothing = dangle();

}
fn dangle() -> &String {

let s = String::from("hello");
&s

}

error[E0106]: missing lifetime specifier

RUST
Rust is a programming language with a robust macro
system, a true metalanguage able to modify at compile
time portion of the language itself.

It exposes two macro-categories:

Declarative macro
• Using a matching system based on RUST tokens can

emit RUST code.

Procedural macro
• Take in input a RUST TokenStream and can modify it,

emitting RUST code.
• Function

• #[proc_macro]
• Function-like macros define macros that look like

function calls.
• Attribute and Derive

• #[proc_macro_attribute]
• #[proc_macro_derive(CustomTrait)]
• Complex, Derive macro works on structs and

enums, Attribute macro allows to create new
attributes.

RUST for embedded

Bare Metal
Environments

Hosted
Environment

«Unfortunately, hardware is basically nothing but a mutable global state, which can feel very
frightening for a Rust developer. Hardware exists independently from the structures of the code

we write and can be modified at any time by the real world.» RUST Embedded Book

STMF0 ESP32C3 RPi4

RUST for embedded
Bare Metal

Environments

Hosted
Environment

libcore
Using #![no_std]

libstd
• OS abstraction
• Main thread

«Unfortunately, hardware is basically nothing but a mutable global state, which can feel very
frightening for a Rust developer. Hardware exists independently from the structures of the code

we write and can be modified at any time by the real world.» RUST Embedded Book

RUST for embedded
Bare Metal

Environments

Hosted
Environment

libcore
Using #![no_std]

libstd
• OS abstraction
• Main thread

libcore: a platform-agnostic subset of libstd

No upstream libraries, system libraries, or libc.
No heap allocation*
No concurrency
No I/O

Supported Types:
array, bool, char, fn,
i8, i16, i32, i64, i128, isize,
u8, u16,u32,u64,u128,usize, ecc.

RUST for embedded
Bare Metal

Environments

Hosted
Environment

libcore
Using #![no_std]

libstd
• OS abstraction
• Main thread

libcore: a platform-agnostic subset of libstd

No upstream libraries, system libraries, or libc.
No heap allocation*
No concurrency
No I/O

Supported Types:
array, bool, char, fn,
i8, i16, i32, i64, i128, isize,
u8, u16,u32,u64,u128,usize, ecc.

*Using the crate core::alloc It is possible to create a custom allocator!

RUST for embedded

In an embedded environment, it
is essential to allow some
interoperability between RUST
code and other code written in a
different language.

RUST allows full integration with C code.

Allow C code to use a RUST library
“RUST to C interface”

Allow RUST code to integrate a C library
“C to RUST interface”

Outilne

• Introduction
• Background
• Hardware: PULP and GAP8
• Language: RUST and RUST for embedded devices
• Software: Stream ciphers and Chacha20

• Method
• Results

Stream Ciphers

Plaintext Secret Ciphertext=

N N N

Stream Ciphers

Plaintext Secret Ciphertext=

N N N

key

256bit

iv

64bit

cnt

64bit

Secret0 Secret1 Secret2 … SecretN

Plaintext

Ciphertext
=

Key Generator

Stream Ciphers – Chacha20
0

0x61707865
1

0x3320646e
2

0x79622d32
3

0x6b206574

4
key

5
key

6
key

7
key

8
key

9
key

10
key

11
key

12
cnt

13
cnt

14
iv

15
iv

QuarterRound

QR(A,B,C,D):
• A+=B; D^=A; D<<<=16;
• C+=D; B^=C; B<<<=12;
• A+=B; D^=A; D<<<=8;
• C+=D; B^=C; B<<<=7;

OddRound

• QR(0, 4, 8, 12)
• QR(1, 5, 9, 13)
• QR(2, 6, 10, 14)
• QR(3, 7, 11, 15)

EvenRound

• QR(0, 5, 10, 15)
• QR(1, 6, 11, 12)
• QR(2, 7, 8, 13)
• QR(3, 4, 9, 14)

A double round (Xi->Xi+1) is a subsequent execution of
an OddRound and an EvenRound.

Chacha20 execute ten double rounds to complete a
block, generating S = X0+X10 (64 Byte)

X0:

By Daniel J. Bernstein

Matrix cells of 32bit little-endian

Stream Ciphers – Chacha20
0

0x61707865
1

0x3320646e
2

0x79622d32
3

0x6b206574

4
key

5
key

6
key

7
key

8
key

9
key

10
key

11
key

12
cnt

13
iv

14
iv

15
iv

QuarterRound

QR(A,B,C,D):
• A+=B; D^=A; D<<<=16;
• C+=D; B^=C; B<<<=12;
• A+=B; D^=A; D<<<=8;
• C+=D; B^=C; B<<<=7;

OddRound

• QR(0, 4, 8, 12)
• QR(1, 5, 9, 13)
• QR(2, 6, 10, 14)
• QR(3, 7, 11, 15)

EvenRound

• QR(0, 5, 10, 15)
• QR(1, 6, 11, 12)
• QR(2, 7, 8, 13)
• QR(3, 4, 9, 14)

A double round (Xi->Xi+1) is a subsequent execution of
an OddRound and an EvenRound.

Chacha20 execute ten double rounds to complete a
block, generating S = X0+X10 (64 Byte)

(Max 256 GiB)

X0:

By IETF - rfc7539,rfc8439

Matrix cells of 32bit little-endian

Outilne

• Introduction
• Background
• Method
• Results

Method

+

Cortex-M4, 168MHz, 192kb SRAM, 1Mb flash (STM32F405)
Cortex-M0, 32Mhz, 16kb SRAM, 128kb flash (nRF51822)

GAP8
ESP32 (NINA-W102)

SPI

UART
(STM32-GAP8)

UART
(STM32-ESP32)

Himax HM01B0
320×320 camera

Method

GAP8
ESP32 (NINA-W102)

SPI

Himax HM01B0
320×320 camera FreeRTOS

GAP8 SDK

Bitcraze CPX

UART SPI TCP

Software Stack
Pulp Microcontroller Software Interface Standard (PMSIS)

+
AiDeck Board Support Package (BSP)

Inter MCU
COM Stack

RUST Crypto
stream ciphers

PM
SI

S

?

Method

FreeRTOS

GAP8 SDK

Bitcraze CPX

UART SPI TCP

Software Stack
Pulp Microcontroller Software Interface Standard (PMSIS)

+
AiDeck Board Support Package (BSP)

Inter MCU
COM Stack

RUST Crypto
stream ciphers

PM
SI

S

?

Method
A GAP SDK-based application (written in C) that wants to
use the RUST streaming cipher library can import a “RUST to
C library” that exposes the library entry point to the
application.

Method
A GAP SDK-based application (written in C) that wants to
use the RUST streaming cipher library can import a “RUST to
C library” that exposes the library entry point to the
application.

In this scenario, to adapt the RUST library to the embedded
device, we need to use some GAP SDK features and
integrate the GAP SDK as a C to the RUST library.

Method
A GAP SDK-based application (written in C) that wants to
use the RUST streaming cipher library can import a “RUST to
C library” that exposes the library entry point to the
application.

In this scenario, to adapt the RUST library to the embedded
device, we need to use some GAP SDK features and
integrate the GAP SDK as a C to the RUST library.

To obtain better performance by exploiting the PULP
features, we need to provide an encapsulated library
version able to use the previous RUST libraries.

Method
Problem:

Some gap_sdk functions cannot be integrated into RUST
directly; they are declared static in the header file, limiting
their visibility.

Solution: developed a C library (gap_rust_sdk_w) able to
directly expose the functions.

Example:

#include <pmsis.h>
#include <bsp/bsp.h>

// Allocate memory in L2
void *pmsis_l2_malloc_wrap(uint32_t size)
{
return pmsis_l2_malloc(size);

}

Method
Problem:
Wrap the gap_sdk functions and structures.

Solution:
Wrap extern function declaration code in:
extern "C" { … }

Use cty crate for types:
pub fn pmsis_l2_malloc_wrap(
size: cty::uint32_t) -> *mut cty::c_void;

Rewrite C structures in RUST using the macro #[repr(C)] and
types defined in cty crate:
#[repr(C)]
pub struct PiClusterConf {
device_type: PiDeviceType,
id: cty::c_int,
heap_start: *mut cty::c_void,
heap_size: u32,
event_kernel: *mut PmsisEventKernelWrap,
flags: PiClusterFlags,

}

Method
Problem:
Avoid compilation for wrong architectures.

Solution:
#[cfg(not(target_arch="riscv32"))]
compile_error!("unsupported target");

Problem:
Disable libstd in order to use only libcore (RUST embedded).

Solution:
#![no_std]

Problem:
GAP8 use different allocators but using libcore we
completely lack the memory allocation features.

Solution:
#![feature(allocator_api)]
Now we can pass in an instance of an AllocRef to each
collection for which we want a custom allocator.

Method
Problem:
Create a custom allocator

Solution:
Create one using gap_sdk functions:

pub struct L2Allocator;
unsafe impl Allocator for L2Allocator {
fn allocate(&self, layout: Layout) ->
Result<NonNull<[u8]>, AllocError> {
…
let ptr = pmsis_l2_malloc(
layout.size()
.try_into()
.map_err(|_| AllocError)?) as
*mut u8;

NonNull::new(ptr)
.map(|ptr| NonNull::slice_from_raw_parts(

ptr, layout.size()))
.ok_or(AllocError)

… } …
}

Method
Problem:
Abstracting the Cluster

Solution:
Create a new Cluster type and implement functions on it exploiting the Box RUST
smart-pointer and the custom allocator.

Method
Problem:
Abstracting the Cluster

Solution:
Create a new Cluster type and implement functions on it exploiting the Box RUST
smart-pointer and the custom allocator.

pub struct Cluster<const CORES: usize> {
device: *mut PiDevice,
_conf: *mut PiClusterConf,

}

impl<const CORES: usize> Cluster<CORES> {
pub fn new() -> Result<Self, ()> {
let device: *mut _ = Box::leak(
Box::new_in(PiDevice::uninit(), L2Allocator));

let _conf: *mut _ = Box::leak(
Box::new_in(PiClusterConf::uninit(), L2Allocator));

unsafe {
pi_cluster_conf_init(_conf);
pi_open_from_conf(device, _conf as *mut cty::c_void);
if pi_cluster_open(device as *mut PiDevice) != 0 {
return Err(());

}
Ok(Self { device, _conf })

}
…

}

Method
Problem:
Masking the data transfer latency between L2 and Cluster L1
Memory.

Solution:
Create a crate able to abstract a buffer and the DMA in order
to move data between L2 and cluster L1.

Problem:
Wrapping the usage of the cluster in order to parallelise a
Stream Cipher (StreamCipher + StreamCipherSeek + KeyIvInit)

Solution:
Write a function generic enough to execute the algorithm on
the cluster exploiting a triple buffering provided by the DMA.

Lifetime, a RUST feature, help us to keep alive the raw data
pointers offered by the GAP SDK.

Method
Problem:
Masking the data transfer latency between L2 and Cluster L1
Memory.

Solution:
Create a crate able to abstract a buffer and the DMA in order
to move data between L2 and cluster L1.

Problem:
Wrapping the usage of the cluster in order to parallelise a
Stream Cipher (StreamCipher + StreamCipherSeek + KeyIvInit)

Solution:
Write a function generic enough to execute the algorithm on
the cluster exploiting a triple buffering provided by the DMA.

Lifetime, a RUST feature, help us to keep alive the raw data
pointers offered by the GAP SDK.

A managed buffer in the L1 cache with automatic DMA transfers in and out based on rounds.
Since we need to transfer back the modified data, we divide the L1 allocation into three buffers:
work, pre-fetch, and commit.

B |------A-------|------B-------|------C--------|
0 | DMA-PREFETCH | | |
1 | WORK | DMA-PREFETCH | |
2 | DMA-COMMIT | WORK | DMA-PREFETCH |
3 | DMA-PREFETCH | DMA-COMMIT | WORK |

Method
Problem:
Chacha20 QR() require bitwise operations like Rotate Left and
Xor. PULP has an ISA extension that provides these opcodes,
but they are not accessible to RUST for the lack of specific
architecture support, riscv32imcXpulp, from the compiler.

Solution:
In gap_rust_cipher_s, we provide an enhanced version of the
chacha20 core to exploit the p.ror opcode and optimise
memory access.
More specifically, we preload a whole Chacha20 matrix using
16 registers, and with the usage of the RUST macro system, we
can emit the desired opcode directly.
Moreover, we expose and use the hardware loop feature that
allows PULP to mange in hardware the loop counter.

Method
Problem:
Chacha20 QR() require bitwise operations like Rotate Left and
Xor. PULP has an ISA extension that provides these opcodes,
but they are not accessible to RUST for the lack of specific
architecture support, riscv32imcXpulp, from the compiler.

Solution:
In gap_rust_cipher_s, we provide an enhanced version of the
chacha20 core to exploit the p.ror opcode and optimise
memory access.
More specifically, we preload a whole Chacha20 matrix using
16 registers, and with the usage of the RUST macro system, we
can emit the desired opcode directly.
Moreover, we expose and use the hardware loop feature that
allows PULP to mange in hardware the loop counter.

#[proc_macro]
pub fn ror(input: TokenStream) -> TokenStream {
let (rd, rs1, rs2) = get_reg_operands(input);
let hex = encode_hex(
&[
"0000100",
&bin_5(rs2),
&bin_5(rs1),
"101",
&bin_5(rd),
"0110011",

].join(""),);
let res = format!(".4byte {}", hex);
quote::quote! { #res }.into()

}

Outilne

• Introduction
• Background
• Method
• Results

Results
We performed an encryption procedure of an increasing
amount of data (from 1 Byte to 128 KiB) using three different
implementations:
• single core without optimisation
• single core
• multicore

• We varied the parallelism from two to eight cores in
the multicore implementation.

We express the efficiency in terms of cycles needed to encrypt
one byte (cB)

Results
We performed an encryption procedure of an increasing
amount of data (from 1 Byte to 128 KiB) using three different
implementations:
• single core without optimisation
• single core
• multicore

• We varied the parallelism from two to eight cores in
the multicore implementation.

We express the efficiency in terms of cycles needed to encrypt
one byte (cB)

Results for 128 KiB of payload
• Single Core no-opt: 92 cB
• Single Core opt: 16 cB

6x faster

Results
We performed an encryption procedure of an increasing
amount of data (from 1 Byte to 128 KiB) using three different
implementations:
• single core without optimisation
• single core
• multicore

• We varied the parallelism from two to eight cores in
the multicore implementation.

We express the efficiency in terms of cycles needed to encrypt
one byte (cB)

Results for 128 KiB of payload
• Single Core no-opt: 92 cB
• Single Core opt: 16 cB

6x faster

Results for 128 KiB of payload
• CORES 2: 8.4 cB
• CORES 4: 4.3 cB
• CORES 8: 2.2 cB (42x, 7.7x)

Results
We performed an encryption procedure of an increasing
amount of data (from 1 Byte to 128 KiB) using three different
implementations:
• single core without optimisation
• single core
• multicore

• We varied the parallelism from two to eight cores in
the multicore implementation.

We express the efficiency in terms of cycles needed to encrypt
one byte (cB)

Results for 128 KiB of payload
• Single Core no-opt: 92 cB
• Single Core opt: 16 cB

6x faster

Other architectures
• U54 - SiFive Freedom U540

• 35.3 cB
• A72 - Broadcom BCM2711

• 5.3 cB
• POWER9 - IBM 02CY642

• 2.6 cB
• Firestorm - Apple M

• 2.0 cB
• Zen3 - AMD Ryzen 9 5950X

• 1.04 cB

Results for 128 KiB of payload
• CORES 2: 8.4 cB
• CORES 4: 4.3 cB
• CORES 8: 2.2 cB (42x, 7.7x)

Results
CP

S
Cr

az
yf

lie
AI

-D
ec

k

RISC-V SoC

Ex
am

pl
e

ap
pl

ic
at

io
n

En
cr

yp
te

d
vi

de
o

su
rv

ei
lla

nc
e

in
 m

ic
ro

-U
AV

In Real World scenario: 2.3 cB, no impact on fps!

62 ms

(60% of) 106ms @ 50MHz
(40% of) 67ms @ 150MHz
(30% of) 62ms @ 250MHz

3.7ms @ 50MHz
2.0ms @ 100MHz
1.2ms @ 150MHz

2.3 cB with DMA
2.9 cB no DMA324×244

greyscale frame

