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Introduction

Cyber-Physical Systems (CPS) challenges have become increasingly
evident in these last years.

This was possible through the contribution of new powerful and energy efficient:
• Systems of Chips (SoC)
• Communication Wireless technologies (e.g., NB-IoT, 5G)

Growing complexity of these devices Increasingly interconnected

Able to act and manipulate the surrounding reality



Gartner® Hype Cycle™ for Cyber Risk Management, 2022:

• CPSs are reaching the peak of inflated expectations.
• Katell Thielemann describes CPS as «Engineered systems that

orchestrate sensing, computation, control, networking and
analytics to interact with the physical world.»

• Inflated expectations: « … phase of overenthusiasm and
unrealistic projections … well-publicized activity by technology
leaders results in some successes ….»

• CPS risk management is an innovation trigger; it started its
ascent among the potentially relevant topics for the next
five years.

Source: Gartner (July 2022)
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The risk management of CPSs is a complex topic. 
Among other things, it relies on the software and hardware security employed in 
developing the system. In our vision, we have two major fields of research that

contribute orthogonally to improving security:
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An open ISA (Instruction Set Architecture) contributes to the development of more security in system-on-chips:
• It allows for greater transparency and collaboration in the development and review process.
• The design and implementation of the ISA can be examined and audited by a larger community, making it more likely that

any vulnerabilities or weaknesses will be discovered and addressed.
• Open source allows for implementing security features and protocols that may not be present in proprietary ISAs.
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The risk management of CPSs is a complex topic. 
Among other things, it relies on the software and hardware security employed in 
developing the system. In our vision, we have two major fields of research that

contribute orthogonally to improving security:

Memory safety in a programming language contributes to the development of more security in CPS, preventing common 
programming errors that can lead to security vulnerabilities. 

• Buffer overflow prevention: a common source of security vulnerabilities. Bounds checking ensures that data is written
only to the memory allocated.

• Pointer safety: preventing common programming errors such as null pointer dereferences and use-after-free bugs.
• Memory leak prevention: Memory safety features ensure that memory is properly allocated and freed, preventing

memory leaks and ensuring that the system does not run out of memory.
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RUST was designed with security in mind. 
It catches the majority of memory mistakes
at compile time.
• Avoid undefined behaviour
• Avoid memory corruption
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The risk management of CPSs is a complex topic. 
Among other things, it relies on the software and hardware security employed in 
developing the system. In our vision, we have two major fields of research that

contribute orthogonally to improving security:
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In this work, we face the interoperability challenge of compiling and executing RUST-encoded software in 
an existing RISC-V platform: GreenWaves’ GAP8. This SoC is a parallel ultra-low-power (PULP) system 

composed of a cluster in a chip.

RustCrypto/stream-ciphers
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We developed a framework to integrate the RUST library 
into an existing software/hardware ecosystem. A use-case 
scenario is encrypted video surveillance in micro-UAV
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PULP and GAP8
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GAP8 is a commercially available SoC based on PULP, a platform 
composed of a RISC-V core (RI5CY) and a Cluster to implement a 
Shared-Memory parallel programming model.
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Target a Shared-Memory parallel programming model: 
• From 4 to 16 additional cores sharing directly a Shared Memory 

(a Tightly Coupled Data Mem (TCDM) or L1)
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Target a Shared-Memory parallel programming model: 
• Organizing the memory in Multiple Banks we obtain 

concurrent access

PULP and GAP8
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Target a Shared-Memory parallel programming model: 
• Data movement is fully software-managed exploiting a DMA
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Step1: Mount the cluster (enabling the clock) and call a 
function on the cluster core 0
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Step2: Fork an execution team on multiple cluster cores; they 
can be synchronised with barriers, critical sections 
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RUST
Rust is a programming language that was designed with 
security in mind.
Several RUST features help to make it more difficult for 
developers to introduce vulnerabilities into their code:

• Ownership and Borrow: Rust’s strict ownership model 
and the borrow checker prevents common 
programming errors such as buffer overflows and use-
after-free issues.

• Type safety: Rust’s type system helps prevent type
confusion bugs, a common source of security 
vulnerabilities.

• Concurrency safety: Rust's approach to concurrency is
designed to prevent data race conditions, which can 
lead to security vulnerabilities.

• Error handling: Rust has a built-in approach to error
handling, avoiding undefined behaviours.



RUST
Rust is a programming language that was designed with 
security in mind.
Several RUST features help to make it more difficult for 
developers to introduce vulnerabilities into their code:

• Ownership and Borrow: Rust’s strict ownership model 
and the borrow checker prevents common 
programming errors such as buffer overflows and use-
after-free issues.

• Type safety: Rust’s type system helps prevent type
confusion bugs, a common source of security 
vulnerabilities.

• Concurrency safety: Rust's approach to concurrency is
designed to prevent data race conditions, which can 
lead to security vulnerabilities.

• Error handling: Rust has a built-in approach to error
handling, avoiding undefined behaviours.

let s1 = String::from("hello"); 
let s2 = s1; 
println!("{}, world!", s1);

error[E0382]: borrow of moved value: `s1`

fn main() { 
let s = String::from("hello"); 
change(&s); 

} 
fn change(some_string: &String) {

some_string.push_str(", world"); 
} 

error[E0596]: cannot borrow
`*some_string` as mutable, as it is behind
a `&` reference



RUST
Rust is a programming language that was designed with 
security in mind.
Several RUST features help to make it more difficult for 
developers to introduce vulnerabilities into their code:

• Ownership and Borrow: Rust’s strict ownership model 
and the borrow checker prevents common 
programming errors such as buffer overflows and use-
after-free issues.

• Type safety: Rust’s type system helps prevent type
confusion bugs, a common source of security 
vulnerabilities.

• Concurrency safety: Rust's approach to concurrency is
designed to prevent data race conditions, which can 
lead to security vulnerabilities.

• Error handling: Rust has a built-in approach to error
handling, avoiding undefined behaviours.

let mut s = String::from("hello"); 
let r1 = &mut s; 
let r2 = &mut s; 
println!("{}, {}", r1, r2); 

error[E0499]: cannot borrow `s` as
mutable more than once at a time

fn main() { 
let reference_to_nothing = dangle(); 

} 
fn dangle() -> &String { 

let s = String::from("hello"); 
&s

} 

error[E0106]: missing lifetime specifier



RUST
Rust is a programming language with a robust macro 
system, a true metalanguage able to modify at compile 
time portion of the language itself.

It exposes two macro-categories:

Declarative macro 
• Using a matching system based on RUST tokens can 

emit RUST code.

Procedural macro
• Take in input a RUST TokenStream and can modify it, 

emitting RUST code.
• Function

• #[proc_macro]
• Function-like macros define macros that look like 

function calls. 
• Attribute and Derive

• #[proc_macro_attribute]
• #[proc_macro_derive(CustomTrait)]
• Complex, Derive macro works on structs and 

enums, Attribute macro allows to create new 
attributes. 



RUST for embedded

Bare Metal 
Environments 

Hosted 
Environment 

«Unfortunately, hardware is basically nothing but a mutable global state, which can feel very
frightening for a Rust developer. Hardware exists independently from the structures of the code 

we write and can be modified at any time by the real world.» RUST Embedded Book

STMF0 ESP32C3 RPi4



RUST for embedded
Bare Metal 

Environments 

Hosted 
Environment 

libcore
Using #![no_std]

libstd
• OS abstraction
• Main thread

«Unfortunately, hardware is basically nothing but a mutable global state, which can feel very
frightening for a Rust developer. Hardware exists independently from the structures of the code 

we write and can be modified at any time by the real world.» RUST Embedded Book



RUST for embedded
Bare Metal 

Environments 

Hosted 
Environment 

libcore
Using #![no_std]

libstd
• OS abstraction
• Main thread

libcore: a platform-agnostic subset of libstd

No upstream libraries, system libraries, or libc.
No heap allocation*
No concurrency
No I/O

Supported Types:
array, bool, char, fn,
i8, i16, i32, i64, i128, isize,
u8, u16,u32,u64,u128,usize, ecc. 



RUST for embedded
Bare Metal 

Environments 

Hosted 
Environment 

libcore
Using #![no_std]

libstd
• OS abstraction
• Main thread

libcore: a platform-agnostic subset of libstd

No upstream libraries, system libraries, or libc.
No heap allocation*
No concurrency
No I/O

Supported Types:
array, bool, char, fn,
i8, i16, i32, i64, i128, isize,
u8, u16,u32,u64,u128,usize, ecc. 

*Using the crate core::alloc It is possible to create a custom allocator!



RUST for embedded

In an embedded environment, it
is essential to allow some
interoperability between RUST
code and other code written in a
different language.

RUST allows full integration with C code.

Allow C code to use a RUST library
“RUST to C interface”

Allow RUST code to integrate a C library
“C to RUST interface”
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Stream Ciphers – Chacha20
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QR(A,B,C,D):
• A+=B; D^=A; D<<<=16;
• C+=D; B^=C; B<<<=12;
• A+=B; D^=A; D<<<=8;
• C+=D; B^=C; B<<<=7;

OddRound

• QR(0, 4,  8, 12)
• QR(1, 5,  9, 13)
• QR(2, 6, 10, 14)
• QR(3, 7, 11, 15)

EvenRound

• QR(0, 5, 10, 15)
• QR(1, 6, 11, 12)
• QR(2, 7,  8, 13)
• QR(3, 4,  9, 14)

A double round (Xi->Xi+1) is a subsequent execution of 
an OddRound and an EvenRound.

Chacha20 execute ten double rounds to complete a 
block, generating S = X0+X10 (64 Byte)

X0:

By Daniel J. Bernstein

Matrix cells of 32bit little-endian
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• A+=B; D^=A; D<<<=8;
• C+=D; B^=C; B<<<=7;

OddRound

• QR(0, 4,  8, 12)
• QR(1, 5,  9, 13)
• QR(2, 6, 10, 14)
• QR(3, 7, 11, 15)

EvenRound

• QR(0, 5, 10, 15)
• QR(1, 6, 11, 12)
• QR(2, 7,  8, 13)
• QR(3, 4,  9, 14)

A double round (Xi->Xi+1) is a subsequent execution of 
an OddRound and an EvenRound.

Chacha20 execute ten double rounds to complete a 
block, generating S = X0+X10 (64 Byte)

(Max 256 GiB)

X0:

By IETF - rfc7539,rfc8439

Matrix cells of 32bit little-endian
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Method
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C library” that exposes the library entry point to the 
application.
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Method
A GAP SDK-based application (written in C) that wants to 
use the RUST streaming cipher library can import a “RUST to 
C library” that exposes the library entry point to the 
application.

In this scenario, to adapt the RUST library to the embedded 
device, we need to use some GAP SDK features and 
integrate the GAP SDK as a C to the RUST library. 

To obtain better performance by exploiting the PULP 
features, we need to provide an encapsulated library 
version able to use the previous RUST libraries.



Method
Problem:

Some gap_sdk functions cannot be integrated into RUST 
directly; they are declared static in the header file, limiting 
their visibility.

Solution: developed a C library (gap_rust_sdk_w) able to 
directly expose the functions.

Example:

#include <pmsis.h>
#include <bsp/bsp.h>

// Allocate memory in L2
void *pmsis_l2_malloc_wrap(uint32_t size) 
{
return pmsis_l2_malloc(size);

}



Method
Problem:
Wrap the gap_sdk functions and structures.

Solution:
Wrap extern function declaration code in:
extern "C" { … }

Use cty crate for types:
pub fn pmsis_l2_malloc_wrap(
size: cty::uint32_t) -> *mut cty::c_void;

Rewrite C structures in RUST using the macro #[repr(C)] and 
types defined in cty crate:
#[repr(C)]
pub struct PiClusterConf {
device_type: PiDeviceType,
id: cty::c_int,
heap_start: *mut cty::c_void,
heap_size: u32,
event_kernel: *mut PmsisEventKernelWrap,
flags: PiClusterFlags,

}



Method
Problem: 
Avoid compilation for wrong architectures.

Solution: 
#[cfg(not(target_arch="riscv32"))]
compile_error!("unsupported target");

Problem: 
Disable libstd in order to use only libcore (RUST embedded).

Solution: 
#![no_std]

Problem: 
GAP8 use different allocators but using libcore we 
completely lack the memory allocation features.

Solution: 
#![feature(allocator_api)]
Now we can pass in an instance of an AllocRef to each
collection for which we want a custom allocator.



Method
Problem: 
Create a custom allocator

Solution:
Create one using gap_sdk functions:

pub struct L2Allocator;
unsafe impl Allocator for L2Allocator {
fn allocate(&self, layout: Layout) -> 
Result<NonNull<[u8]>, AllocError> {
…
let ptr = pmsis_l2_malloc( 
layout.size()
.try_into()
.map_err(|_| AllocError)?) as
*mut u8;

NonNull::new(ptr)
.map(|ptr| NonNull::slice_from_raw_parts(

ptr, layout.size()))
.ok_or(AllocError)

… } …
}
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Abstracting the Cluster

Solution:
Create a new Cluster type and implement functions on it exploiting the Box RUST 
smart-pointer and the custom allocator.



Method
Problem: 
Abstracting the Cluster

Solution:
Create a new Cluster type and implement functions on it exploiting the Box RUST 
smart-pointer and the custom allocator.

pub struct Cluster<const CORES: usize> {
device: *mut PiDevice,
_conf: *mut PiClusterConf,

}

impl<const CORES: usize> Cluster<CORES> {
pub fn new() -> Result<Self, ()> {
let device: *mut _ = Box::leak(
Box::new_in(PiDevice::uninit(), L2Allocator));

let _conf: *mut _ = Box::leak( 
Box::new_in(PiClusterConf::uninit(), L2Allocator));

unsafe {
pi_cluster_conf_init(_conf);
pi_open_from_conf(device, _conf as *mut cty::c_void);
if pi_cluster_open(device as *mut PiDevice) != 0 {
return Err(());

}
Ok(Self { device, _conf })

} 
…

}



Method
Problem: 
Masking the data transfer latency between L2 and Cluster L1 
Memory.

Solution:
Create a crate able to abstract a buffer and the DMA in order 
to move data between L2 and cluster L1.

Problem: 
Wrapping the usage of the cluster in order to parallelise a 
Stream Cipher (StreamCipher + StreamCipherSeek + KeyIvInit)

Solution:
Write a function generic enough to execute the algorithm on 
the cluster exploiting a triple buffering provided by the DMA.

Lifetime, a RUST feature, help us to keep alive the raw data 
pointers offered by the GAP SDK.



Method
Problem: 
Masking the data transfer latency between L2 and Cluster L1 
Memory.

Solution:
Create a crate able to abstract a buffer and the DMA in order 
to move data between L2 and cluster L1. 

Problem: 
Wrapping the usage of the cluster in order to parallelise a 
Stream Cipher (StreamCipher + StreamCipherSeek + KeyIvInit)

Solution:
Write a function generic enough to execute the algorithm on 
the cluster exploiting a triple buffering provided by the DMA.

Lifetime, a RUST feature, help us to keep alive the raw data 
pointers offered by the GAP SDK.

A managed buffer in the L1 cache with automatic DMA transfers in and out based on rounds.
Since we need to transfer back the modified data, we divide the L1 allocation into three buffers: 
work, pre-fetch, and commit.

B |------A-------|------B-------|------C--------|
0 | DMA-PREFETCH |              |               |
1 | WORK         | DMA-PREFETCH |               | 
2 | DMA-COMMIT   | WORK         | DMA-PREFETCH  | 
3 | DMA-PREFETCH | DMA-COMMIT   | WORK          | 



Method
Problem: 
Chacha20 QR() require bitwise operations like Rotate Left and 
Xor. PULP has an ISA extension that provides these opcodes, 
but they are not accessible to RUST for the lack of specific 
architecture support, riscv32imcXpulp, from the compiler. 

Solution:
In gap_rust_cipher_s, we provide an enhanced version of the 
chacha20 core to exploit the p.ror opcode and optimise
memory access.
More specifically, we preload a whole Chacha20 matrix using 
16 registers, and with the usage of the RUST macro system, we 
can emit the desired opcode directly.
Moreover, we expose and use the hardware loop feature that
allows PULP to mange in hardware the loop counter.



Method
Problem: 
Chacha20 QR() require bitwise operations like Rotate Left and 
Xor. PULP has an ISA extension that provides these opcodes, 
but they are not accessible to RUST for the lack of specific 
architecture support, riscv32imcXpulp, from the compiler. 

Solution:
In gap_rust_cipher_s, we provide an enhanced version of the 
chacha20 core to exploit the p.ror opcode and optimise
memory access.
More specifically, we preload a whole Chacha20 matrix using 
16 registers, and with the usage of the RUST macro system, we 
can emit the desired opcode directly.
Moreover, we expose and use the hardware loop feature that 
allows PULP to mange in hardware the loop counter.

#[proc_macro]
pub fn ror(input: TokenStream) -> TokenStream {
let (rd, rs1, rs2) = get_reg_operands(input);
let hex = encode_hex(
&[
"0000100",
&bin_5(rs2),
&bin_5(rs1),
"101",
&bin_5(rd),
"0110011",

].join(""),);
let res = format!(".4byte {}", hex);
quote::quote! { #res }.into()

}
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Results
We performed an encryption procedure of an increasing
amount of data (from 1 Byte to 128 KiB) using three different
implementations:
• single core without optimisation
• single core
• multicore

• We varied the parallelism from two to eight cores in
the multicore implementation.

We express the efficiency in terms of cycles needed to encrypt
one byte (cB) 
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Results
We performed an encryption procedure of an increasing
amount of data (from 1 Byte to 128 KiB) using three different
implementations:
• single core without optimisation
• single core
• multicore

• We varied the parallelism from two to eight cores in
the multicore implementation.

We express the efficiency in terms of cycles needed to encrypt
one byte (cB) 

Results for 128 KiB of payload
• Single Core no-opt: 92 cB
• Single Core opt: 16 cB

6x faster

Other architectures
• U54 - SiFive Freedom U540

• 35.3 cB
• A72 - Broadcom BCM2711 

• 5.3 cB
• POWER9 - IBM 02CY642 

• 2.6 cB
• Firestorm - Apple M 

• 2.0 cB
• Zen3 - AMD Ryzen 9 5950X 

• 1.04 cB

Results for 128 KiB of payload
• CORES 2: 8.4 cB
• CORES 4: 4.3 cB
• CORES 8: 2.2 cB (42x, 7.7x)
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In Real World scenario: 2.3 cB, no impact on fps! 

62 ms

(60% of) 106ms @ 50MHz 
(40% of )  67ms @ 150MHz 
(30% of)   62ms @ 250MHz 

3.7ms @ 50MHz 
2.0ms @ 100MHz 
1.2ms @ 150MHz 

2.3 cB with DMA
2.9 cB no DMA324×244 

greyscale frame 


