Resource Aware GPU Scheduling in Kubernetes Infrastructure

Aggelos Ferikoglou, Dimosthenis Masouros, Achilleas Tzenetopoulos, Sotirios Xydis, Dimitrios Soudris

Microprocessors and Digital Systems Laboratory, ECE, National Technical University of Athens, Greece

19-01-2021

Outline

- Introduction & Trends
- Motivational Observations & Analysis
- Resource-aware GPU Scheduling
- Experimental Setup & Evaluation
- Conclusion

Introduction & Trends

• Trends: Cloud Migration & Machine Learning Hype

Source: IDG CLOUD COMPUTING STUDY, 2020

docker

- Key Technologies:
 - Docker (Containerization)
 - Kubernetes (Container Orchestration)

Source: MRFR Analysis

Global Machine Learning Market, by Component, 2017-2024 (USD Million)

Introduction & Trends

ML workloads on cloud

How can we manage the computational demands ?
USE OF ACCELERATORS (GPUs, FPGAs, TPUs, ASICs)

http://www.netdesignarena.com/index.php/2019/01/21/machine-learning-on-google-cloud-platform-simplified/

Motivational Observations & Analysis

How does Kubernetes handle GPUs ?

Binds the whole GPU to an application

How does Alibaba Cloud handle GPUs ?

° Exposes GPU memory as an extended resource in Kubernetes ⇒ ENABLES GPU SHARING !

https://github.com/AliyunContainerService/gpushare-scheduler-extender

Motivational Example: GPU Sharing Advantages

- x3.24 higher average memory usage
- x6.8 higher average utilization percentage
- x1.28 higher average power usage
- 52.8% decrease of the average energy consumption
- x2.67 faster workload execution

Motivational Example: GPU Sharing Advantages

- x3.24 higher average memory usage
- x6.8 higher average utilization percentage
- x1.28 higher average power usage
- 52.8% decrease of the average energy consumption
- x2.67 faster workload execution

What about GPU memory over-provisioning from users ?

Not Only a Users' Problem...

State-of-the-art frameworks bind a GPU per application !

 $^{\circ}$ Tensorflow by default binds the whole GPU per application

 Spark 3.0 with Rapids plugin by default binds the 90% of the GPU memory per executor

Resource Aware GPU Scheduling Framework

Kubernetes Cluster with 3 Nodes:

- Master node
- ° CPU only worker node
- GPU provisioned worker node

Resource Aware GPU Scheduling Framework

Monitoring System

- NVIDIA DCGM Node Exporter
 - Exports GPU metrics in time-series format
- Prometheus Time-series DB

Stores GPU metrics time-series & provides PromQL for query execution

Resource Aware GPU Scheduling Framework

• MLPerf Inference Benchmark Suite

 Used for inference engine workload creation

Resource Aware GPU Scheduler Overview

Resource Agnostic GPU Sharing (Res-Ag)

Correlation Based Prediction (CBP) *

* https://ieeexplore.ieee.org/document/8891040

Peak Prediction (PP) *

* https://ieeexplore.ieee.org/document/8891040

Experimental Setup & Evaluation

• Evaluation through a rich set of comparative experiments

A workload consists of:

° A set of different MLPerf Inference Engines

 An interval that defines the Inference Engine arrival pattern

In each experiment the exact same workload, for different over-provisioning percentages, was fed to:

- ° Kubernetes GPU Scheduler Extension
- ° Alibaba Cloud GPU Scheduler Extension
- ° Resource-aware GPU Scheduler

Model	Dataset	Queries/Engine (#Engines)
mobilenet	Imagenet	1024(2), 2048(2)
mobilenet quantized	Imagenet	256(2), 512(2)
resnet50	Imagenet	4096(2), 8192(2)
ssd-mobilenet	Coco (Resized 300x300)	128(3), 1024(2)
ssd-mobilenet quantized finetuned	Coco (Resized 300x300)	64(2), 1024(2)
ssd-mobilenet symmetrically quantized finetuned	Coco (Resized 300x300)	512(2), 4096(2)

Quality of Service Metrics

• Offers lower End-to-End Inference Engine 99%-ile Execution

- ° x3.2 from Kubernetes GPU scheduler on an average
- ° x2.4 from Alibaba Cloud GPU scheduler on an average

• Offers lower Inference Engine Pending Time Average

- ° **x11** from Kubernetes GPU scheduler on an average
- $^\circ$ **x8.6** from Alibaba Cloud GPU scheduler on an average

GPU Resource Utilization Metrics

Offers higher GPU Memory Usage Average

- ° x2.5 from Kubernetes GPU scheduler on an average
- $^\circ~\textbf{x1.5}$ from Alibaba Cloud GPU scheduler on an average

Offers higher GPU Utilization Percentage Average

- $^\circ~\textbf{x6.1}$ from Kubernetes GPU scheduler on an average
- x2.1 from Alibaba Cloud GPU scheduler on an average

Leads to higher GPU Power Usage Average

- x1.2 from Kubernetes GPU scheduler on an average
- x1.1 from Alibaba Cloud GPU scheduler on an average

Conclusion

- Designed a resource-aware GPU scheduling framework for Kubernetes Inference clusters
- Our framework offers:
 - °**x2.4** lower end-to-end inference engine execution time 99%-ile
 - °**x1.5** higher GPU memory usage average
 - °x2.1 higher GPU utilization percentage average
 - from Alibaba Cloud GPU Scheduler Extension

Thank you, Questions ?