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Introduction & Trends

● Trends: Cloud Migration & Machine Learning Hype

●  Key Technologies:
◦ Docker (Containerization)
◦ Kubernetes (Container Orchestration)
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Introduction & Trends

● ML workloads on cloud
◦ How can we manage the computational demands ?

USE OF ACCELERATORS (GPUs, FPGAs, TPUs, ASICs)

http://www.netdesignarena.com/index.php/2019/01/21/machine-learning-on-google-cloud-platform-simplified/

● ML workloads on cloud
◦ How can we manage the computational demands ?

USE OF ACCELERATORS (GPUs, FPGAs, TPUs, ASICs)

http://www.netdesignarena.com/index.php/2019/01/21/machine-learning-on-google-cloud-platform-simplified/
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Motivational Observations & Analysis

● How does Kubernetes handle GPUs ?
◦ Binds the whole GPU to an application

● How does Alibaba Cloud handle GPUs ?
◦ Exposes GPU memory as an extended resource in Kubernetes 
 ⇒ ENABLES GPU SHARING !

https://github.com/AliyunContainerService/gpushare-scheduler-extender
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Motivational Example: GPU Sharing 
Advantages

● x3.24 higher average memory usage
● x6.8 higher average utilization percentage
● x1.28 higher average power usage
● 52.8% decrease of the average energy 
consumption
● x2.67 faster workload execution
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Motivational Example: GPU Sharing 
Advantages

● x3.24 higher average memory usage
● x6.8 higher average utilization percentage
● x1.28 higher average power usage
● 52.8% decrease of the average energy 
consumption
● x2.67 faster workload execution

What about GPU memory 
over-provisioning

 from users ?
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Not Only a Users’ Problem...

● State-of-the-art frameworks bind a 
GPU per application !

◦ Tensorflow by default binds the whole GPU 
per application

◦ Spark 3.0 with Rapids plugin by default binds 
the 90% of the GPU memory per executor

+
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Resource Aware GPU Scheduling 
Framework

● Kubernetes Cluster 
with 3 Nodes:

◦ Master node 

◦ CPU only worker node

◦ GPU provisioned worker 
node
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Resource Aware GPU Scheduling 
Framework

● Monitoring System
◦ NVIDIA DCGM Node Exporter

▻ Exports GPU metrics in time-series 
format 

◦ Prometheus Time-series DB
▻ Stores GPU metrics time-series & 
provides PromQL for query execution  
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Resource Aware GPU Scheduling 
Framework

● MLPerf Inference 
Benchmark Suite

◦ Used for inference engine 
workload creation 
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Resource Aware GPU Scheduler 
Overview
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Resource Agnostic GPU Sharing (Res-
Ag)
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Correlation Based Prediction (CBP) *

* https://ieeexplore.ieee.org/document/8891040
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Peak Prediction (PP) *

* https://ieeexplore.ieee.org/document/8891040
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Experimental Setup & Evaluation

● Evaluation through a rich set 
of comparative experiments
● A workload consists of:

◦ A set of different MLPerf Inference 
Engines

◦ An interval that defines the Inference 
Engine arrival pattern

● In each experiment the exact 
same workload, for different 
over-provisioning percentages, 
was fed to: 

◦ Kubernetes GPU Scheduler Extension

◦ Alibaba Cloud GPU Scheduler Extension

◦ Resource-aware GPU Scheduler

Model Dataset Queries/Engine 
(#Engines)

mobilenet Imagenet 1024(2), 2048(2)

mobilenet 
quantized

Imagenet 256(2), 512(2)

resnet50 Imagenet 4096(2), 8192(2)

ssd-mobilenet Coco (Resized 
300x300)

128(3), 1024(2)

ssd-mobilenet 
quantized 
finetuned

Coco (Resized 
300x300)

64(2), 1024(2)

ssd-mobilenet 
symmetrically 
quantized 
finetuned  

Coco (Resized 
300x300)

512(2), 4096(2)
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Quality of Service Metrics

● Offers lower End-to-End Inference Engine 99%-ile Execution
◦ x3.2 from Kubernetes GPU scheduler on an average

◦ x2.4 from Alibaba Cloud GPU scheduler on an average

● Offers lower Inference Engine Pending Time Average
◦ x11 from Kubernetes GPU scheduler on an average

◦ x8.6 from Alibaba Cloud GPU scheduler on an average
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GPU Resource Utilization Metrics

● Offers higher GPU Memory Usage Average
◦  x2.5 from Kubernetes GPU scheduler on an average

◦  x1.5 from Alibaba Cloud GPU scheduler on an average

● Offers higher GPU Utilization Percentage Average
◦  x6.1 from Kubernetes GPU scheduler on an average

◦  x2.1 from Alibaba Cloud GPU scheduler on an average

● Leads to higher GPU Power Usage Average
◦  x1.2 from Kubernetes GPU scheduler on an average

◦  x1.1 from Alibaba Cloud GPU scheduler on an average
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Conclusion

● Designed a resource-aware GPU scheduling 
framework for Kubernetes Inference clusters
● Our framework offers:

◦x2.4 lower end-to-end inference engine execution time 99%-
ile

◦x1.5 higher GPU memory usage average

◦x2.1 higher GPU utilization percentage average

from Alibaba Cloud GPU Scheduler Extension
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   Thank you, Questions ?
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