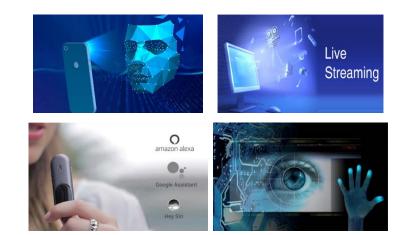


Towards adaptive multi-Alternative Process Network

<u>Hasna Bouraoui</u>, Chadlia Jerad, Jeronimo Castrillon Chair for Compiler Construction, TU Dresden

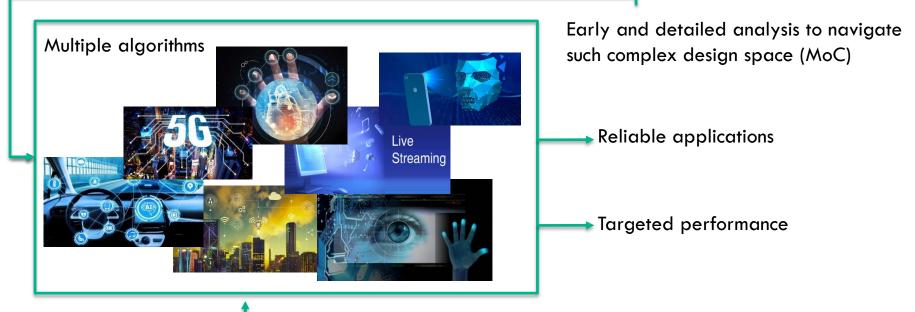
PARMA-DITAM'21 Workshop (co-located with the HiPEAC Conference)

Introduction


Autonomous driving

5G

Medical systems



Biometric authentications Voice controlled systems Live streaming subtitling

Introduction

Different constraints:


- Hardware resources
- Energy budget
- User constraints

Introduction

- Model of Computations (MoCs)
 - □ Fulfill the need for analyzing such complex applications
 - Provide high level presentation and allow for parallelism adaptivity

Applications are getting more complex _____ (parallelism and algorithmic adaptivity) How to quickly explore large design spaces (taking into account constraints)

Related work

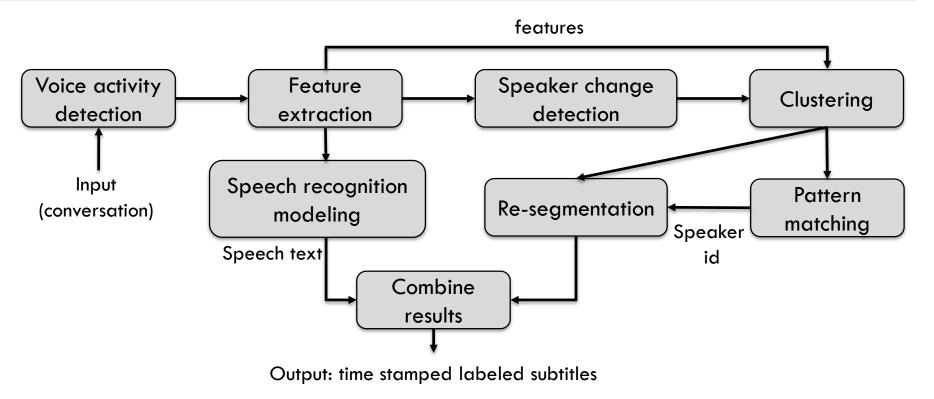
	Adaptivity and contributions
SDF [7,14,22]	Parallelism adaptivity depending on the changes of the target hardware Transformations that adapt the parallelism in SDF according to available resources
SADF [21]	Parallelism adaptivity and pre-defined number of scenarios
PiSDF [3]	Adaptivity is expressed at the token production and consumption level
KPN [16]	Parallelism adaptivity by duplicating stateless processes

Related work

	Adaptivity and contributions
SDF [7,14,22]	Parallelism adaptivity depending on the changes of the target hardware Transformations that adapt the parallelism in SDF according to available resources
SADF [21]	Parallelism adaptivity and pre-defined number of scenarios
PiSDF [3]	Adaptivity is expressed at the token production and consumption level
KPN [16]	Parallelism adaptivity by duplicating stateless processes
mAPN	Parallelism and algorithmic adaptivity for a large design space

Outline

- Motivational example
- 🗅 mAPN
 - Synthetic example
 - Exploration algorithm
- Experimental results
 - ASA alternatives
 - Experimental results and fidelity analysis
- Summary and outlook



- Automatic subtitling application is combined of 3 functionalities:
 - Speaker recognition (who is speaking)
 - Speech recognition (what are they saying)
 - Speaker diarization (when are they speaking)

Automatic subtitling application

Automatic subtitling application

- Automatic subtitling
 - Feature extraction
 - Mel Frequency Cepstral Coefficients (MFCC)

Source

Read

wave

Read

wave

Sink

Sink

ED

ED

ED

Source

Source

Sink

Cos

- Fourier Bessel Cepstral Coefficients (FBCC)
- Pattern Matching
 - Euclidean Distance (DE) compact
 - Euclidean distance expanded
 - Cosine Similarity

DCT

de

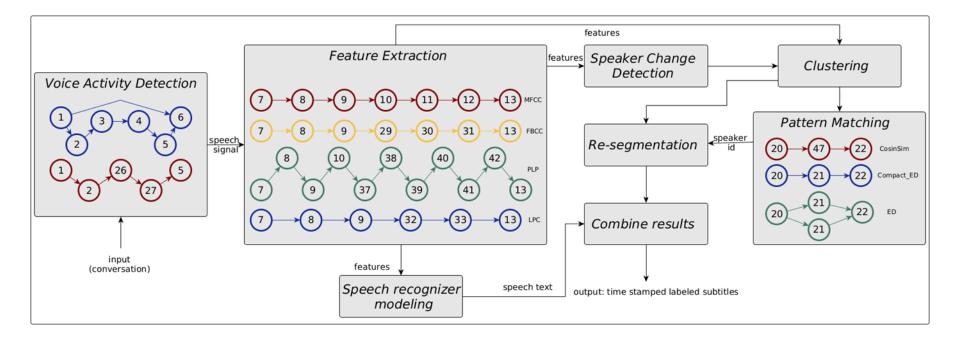
Melfilte

Bank

FFT

Bessel

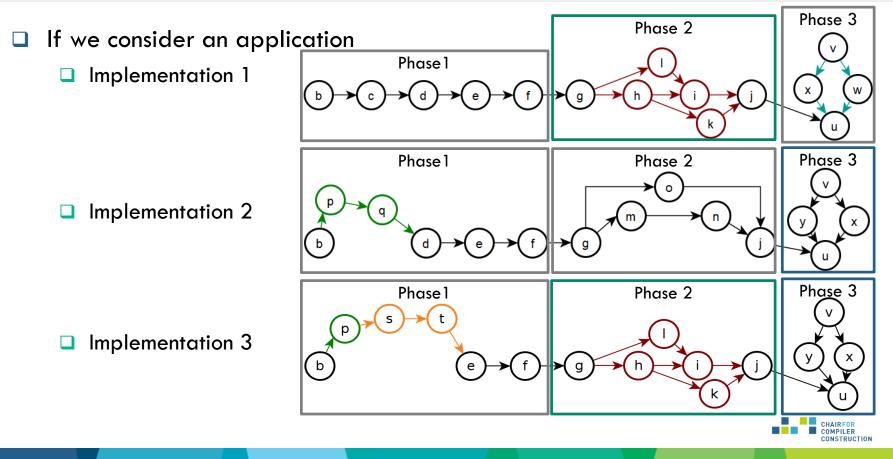
Hammina


Hammina

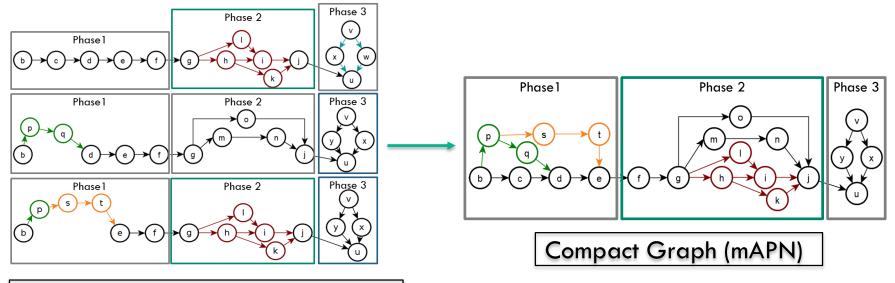
CENTER FOR ADVANCING ELECTRONICS

Automatic subtitling application

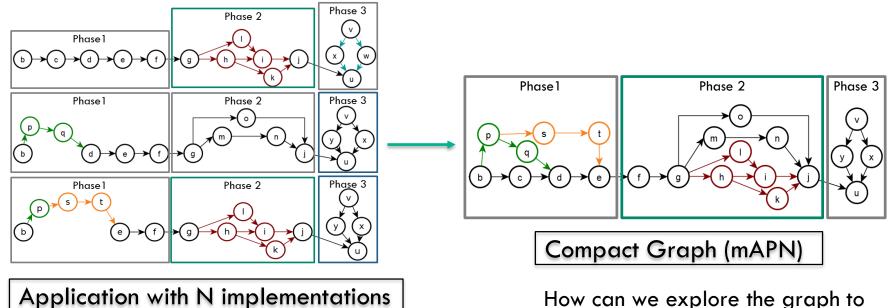
Outline



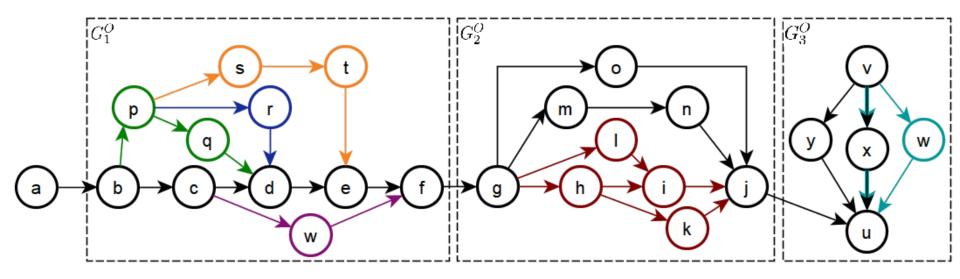
- Motivational example
- □ mAPN
 - □ Synthetic example
 - Exploration algorithm
- Experimental results
 - ASA alternatives
 - Experimental results and fidelity analysis
- Summary and outlook



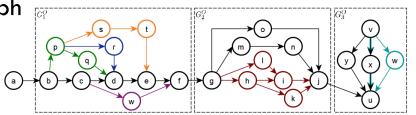
13

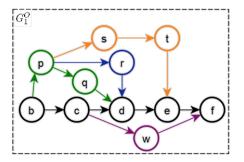


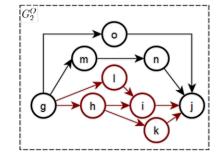
Application with N implementations

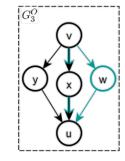


How can we explore the graph to extract the different implementations?





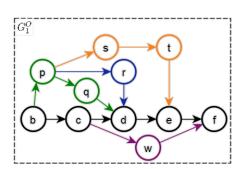

Generic example of multi-alternative graph


- Define the ClosedGraphs ()
 - Well formed graph
 - No loop back

- Minimal cannot include more than one closed sub-mAPN
- The set of colors that fork within a closed subgraph is the same that joins
- Remove common nodes

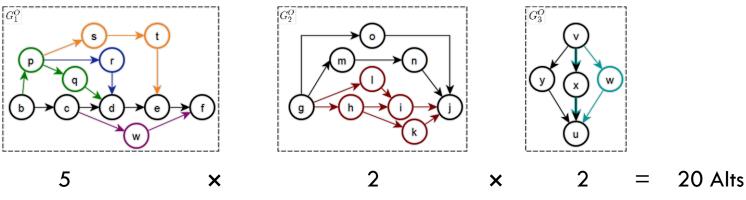
COMPILER CONSTRUCTION

q

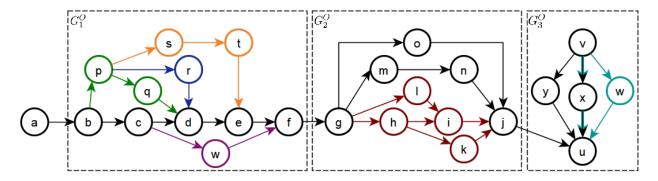

W

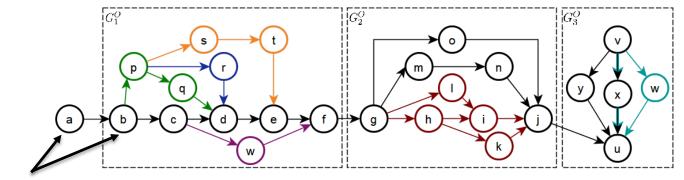
b

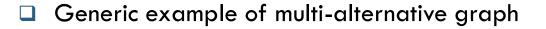
b

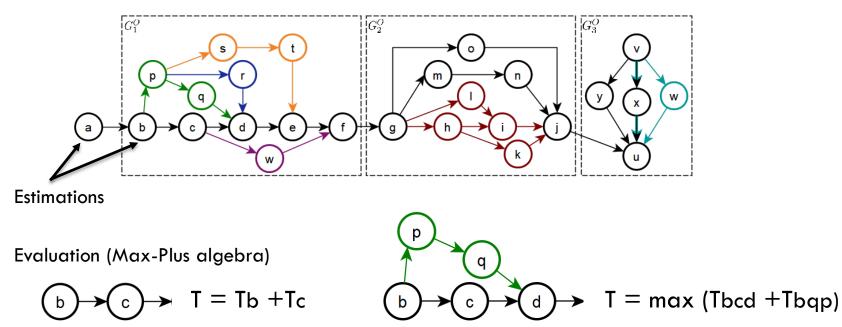

Generic example of multi-alternative graph

Generate possible alternatives of each sub-graph $(b) \rightarrow (c) \rightarrow (d) \rightarrow (e) \rightarrow (f)$

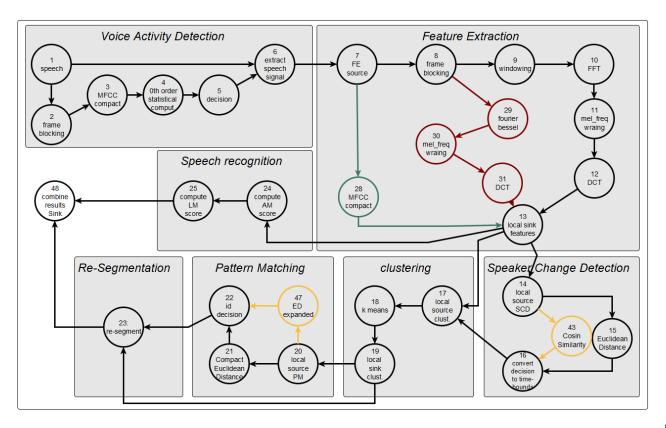

- Generic example of multi-alternative graph
 - Mix and match possible alternatives of sub-graphs


Generic example of multi-alternative graph





Estimations


Outline

- Motivational example
- mAPN
 - Synthetic example
 - Exploration algorithm
- Experimental results
 - ASA alternatives
 - Experimental results and fidelity analysis
- Summary and outlook

24

	Estimations			Real						
			Exp. Results							
	Odroid		Odroid		GPI	D	Odroid	R/F	GPP	R/F
Alt 1: {VAD-FE(Bessel)-SCD(ED)-Cl-PM(DLP-4)}	102.36	X	26.24	✓	56.43	R	20.66	R		
Alt 2: {VAD-FE(Exp.MFCC)-SCD(ED)-Cl-PM(DLP-4)}	52.11	✓	11.53	✓	24.43	R	9.94	R		
Alt 3: {VAD-FE(Comp.MFCC)-SCD(ED)-Cl-PM(DLP-4)}	51.80	✓	10.56	1	23.66	R	9.66	R		
Alt 4: {VAD-FE(Bessel)-SCD(ED)-Cl-PM(DLP-1)}	115.20	X	30.74	✓	67.69	R	25.73	R		
Alt 5: {VAD-FE(Exp.MFCC)-SCD(ED)-Cl-PM(DLP-1)}	64.95	X	16.03	✓	53.78	F	20.54	R		
Alt 6: {VAD-FE(Comp.MFCC)-SCD(ED)-Cl-PM(DLP-1)}	64.64	X	15.06	 Image: A start of the start of	52.78	F	19.51	R		
Alt 7: {VAD-FE(Bessel)-SCD(CS)-Cl-PM(DLP-4)}	102.35	X	26.23	✓	45.72	F	20.93	R		
Alt 8: {VAD-FE(Exp.MFCC)-SCD(CS)-Cl-PM(DLP-4)}	52.10	✓	11.52	✓	23.10	R	10.05	R		
Alt 9: {VAD-FE(Comp.MFCC)-SCD(CS)-Cl-PM(DLP-4)}	51.79	✓	10.55	✓	23.68	R	9.32	R		
Alt 10: {VAD-FE(Bessel)-SCD(CS)-Cl-PM(DLP-1)}	115.19	X	30.73	1	56.88	R	20.42	R		
Alt 11: {VAD-FE(Exp.MFCC)-SCD(CS)-Cl-PM(DLP-1)}	64.94	X	16.02	✓	53.74	F	19.94	R		
Alt 12: {VAD-FE(Comp.MFCC)-SCD(CS)-Cl-PM(DLP-1)}	64.63	X	15.05	1	55.47	R	20.01	R		

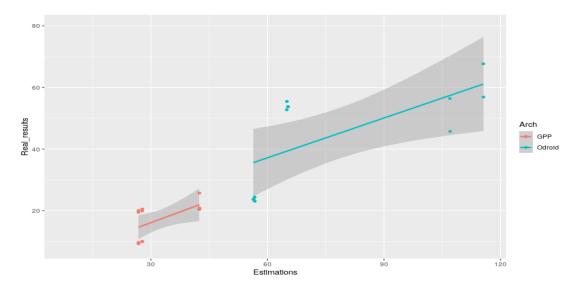
	Estimations				Real							
	Estimations				Exp. Results							
	Odroid		Odroid		Odroid		GPI	D	Odroid	R/F	GPP	R/F
Alt 1: {VAD-FE(Bessel)-SCD(ED)-Cl-PM(DLP-4)}	102.36	X	26.24	1	56.43	R	20.66	R				
Alt 2: {VAD-FE(Exp.MFCC)-SCD(ED)-Cl-PM(DLP-4)}	52.11	✓	11.53	1	24.43	R	9.94	R				
Alt 3: {VAD-FE(Comp.MFCC)-SCD(ED)-Cl-PM(DLP-4)}	51.80	✓	10.56	1	23.66	R	9.66	R				
Alt 4: {VAD-FE(Bessel)-SCD(ED)-Cl-PM(DLP-1)}	115.20	X	30.74	1	67.69	R	25.73	R				
Alt 5: {VAD-FE(Exp.MFCC)-SCD(ED)-Cl-PM(DLP-1)}	64.95	X	16.03	1	53.78	F	20.54	R				
Alt 6: {VAD-FE(Comp.MFCC)-SCD(ED)-Cl-PM(DLP-1)}	64.64	X	15.06	1	52.78	F	19.51	R				
Alt 7: $\{VAD-FE(Bessel)-SCD(CS)-Cl-PM(DLP-4)\}$	102.35	X	26.23	1	45.72	F	20.93	R				
Alt 8: {VAD-FE(Exp.MFCC)-SCD(CS)-Cl-PM(DLP-4)}	52.10	✓	11.52	1	23.10	R	10.05	R				
Alt 9: {VAD-FE(Comp.MFCC)-SCD(CS)-Cl-PM(DLP-4)}	51.79	✓	10.55	1	23.68	R	9.32	R				
Alt 10: {VAD-FE(Bessel)-SCD(CS)-Cl-PM(DLP-1)}	115.19	X	30.73	1	56.88	R	20.42	R				
Alt 11: {VAD-FE(Exp.MFCC)-SCD(CS)-Cl-PM(DLP-1)}	64.94	X	16.02	1	5 3.74	F	19.94	R				
Alt 12: {VAD-FE(Comp.MFCC)-SCD(CS)-Cl-PM(DLP-1)}	64.63	X	15.05	1	55.47	R	20.01	R				

Constraint = 55ms

	Estimations			Real					
						Exp. Results			
	Odroid		GPI	D	Odroid	R/F	GPP	R/F	
Alt 1: $\{VAD-FE(Bessel)-SCD(ED)-Cl-PM(DLP-4)\}$	102.36	X	26.24	✓	56.43	R	20.66	R	
Alt 2: $\{VAD-FE(Exp.MFCC)-SCD(ED)-Cl-PM(DLP-4)\}$	52.11	1	11.53	1	24.43	R	9.94	R	
Alt 3: {VAD-FE(Comp.MFCC)-SCD(ED)-Cl-PM(DLP-4)}	51.80	1	10.56	1	23.66	R	9.66	R	
Alt 4: {VAD-FE(Bessel)-SCD(ED)-Cl-PM(DLP-1)}	115.20	X	30.74	1	67.69	R	25.73	R	
Alt 5: {VAD-FE(Exp.MFCC)-SCD(ED)-Cl-PM(DLP-1)}	64.95	X	16.03	1	53.78	\mathbf{F}	20.54	R	
Alt 6: {VAD-FE(Comp.MFCC)-SCD(ED)-Cl-PM(DLP-1)}	64.64	X	15.06	1	52.78	\mathbf{F}	19.51	R	
Alt 7: $\{VAD-FE(Bessel)-SCD(CS)-Cl-PM(DLP-4)\}$	102.35	X	26.23	1	45.72	\mathbf{F}	20.93	R	
Alt 8: {VAD-FE(Exp.MFCC)-SCD(CS)-Cl-PM(DLP-4)}	52.10	1	11.52	1	23.10	R	10.05	R	
Alt 9: $\{VAD-FE(Comp.MFCC)-SCD(CS)-Cl-PM(DLP-4)\}$	51.79	1	10.55	1	23.68	R	9.32	R	
Alt 10: {VAD-FE(Bessel)-SCD(CS)-Cl-PM(DLP-1)}	115.19	X	30.73	1	56.88	R	20.42	R	
Alt 11: {VAD-FE(Exp.MFCC)-SCD(CS)-Cl-PM(DLP-1)}	64.94	X	16.02	1	53.74	F	19.94	R	
Alt 12: {VAD-FE(Comp.MFCC)-SCD(CS)-Cl-PM(DLP-1)}	64.63	X	15.05	1	55.47	R	20.01	R	

Constraint = 55ms

66,66%


	Estimations			Real						
		Estimations			Exp. Results					
	Odroid		Odroid		GPI	D	Odroid	R/F	GPP	R/F
Alt 1: $\{VAD-FE(Bessel)-SCD(ED)-Cl-PM(DLP-4)\}$	102.36	X	26.24	\checkmark	56.43	R	20.66	R		
Alt 2: $\{VAD-FE(Exp.MFCC)-SCD(ED)-Cl-PM(DLP-4)\}$	52.11	✓	11.53	 Image: A start of the start of	24.43	R	9.94	R		
Alt 3: {VAD-FE(Comp.MFCC)-SCD(ED)-Cl-PM(DLP-4)}	51.80	✓	10.56	✓	23.66	R	9.66	R		
Alt 4: $\{VAD-FE(Bessel)-SCD(ED)-Cl-PM(DLP-1)\}$	115.20	X	30.74	 Image: A start of the start of	67.69	R	25.73	R		
Alt 5: $\{VAD-FE(Exp.MFCC)-SCD(ED)-Cl-PM(DLP-1)\}$	64.95	X	16.03	 Image: A start of the start of	53.78	F	20.54	R		
Alt 6: $\{VAD-FE(Comp.MFCC)-SCD(ED)-Cl-PM(DLP-1)\}$	64.64	X	15.06	 Image: A start of the start of	52.78	F	19.51	R		
Alt 7: $\{VAD-FE(Bessel)-SCD(CS)-Cl-PM(DLP-4)\}$	102.35	X	26.23	 Image: A start of the start of	45.72	F	20.93	R		
Alt 8: {VAD-FE(Exp.MFCC)-SCD(CS)-Cl-PM(DLP-4)}	52.10	✓	11.52	✓	23.10	R	10.05	R		
Alt 9: {VAD-FE(Comp.MFCC)-SCD(CS)-Cl-PM(DLP-4)}	51.79	✓	10.55	✓	23.68	R	9.32	R		
Alt 10: {VAD-FE(Bessel)-SCD(CS)-Cl-PM(DLP-1)}	115.19	X	30.73	✓	56.88	R	20.42	R		
Alt 11: {VAD-FE(Exp.MFCC)-SCD(CS)-Cl-PM(DLP-1)}	64.94	X	16.02	 Image: A start of the start of	53.74	F	19.94	R		
Alt 12: {VAD-FE(Comp.MFCC)-SCD(CS)-Cl-PM(DLP-1)}	64.63	X	15.05	\checkmark	55.47	R	20.01	R		

Constraint = 55ms

66,66% 100%

Spearman = 0,936 Kendall = 0,802

Outline

- Motivational example of ASA
- mAPN
 - Synthetic example
 - Exploration algorithm
- Experimental results
 - ASA alternatives
 - Experimental results and fidelity analysis
- Summary and outlook

- mAPN, a novel model where multiple algorithms variants are represented in a compact graph
- mAPN is able to express parallelism and algorithmic adaptivity

Enlarge the design space and ease the process of selecting feasible variants while meeting application/user constraints

Approach by the real application: Automatic subtitling

- Enlarge the design space and increase the number of possibilities to better study the scalability of our approach
- Investigate on more elaborated aggregation rules and more accurate methods of estimations
- Investigate efficient run-time algorithmic switching mechanisms
- Consider aggregation and evaluation over more abstract domain specific metrics like accuracy

Thank you for your attention

