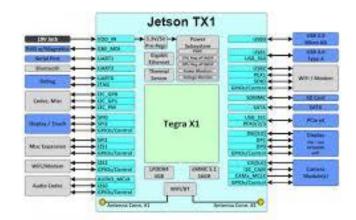


Temperature-aware Hybrid Power Models in Embedded GPUs

Jose Nunez-Yanez, Kris Nikov, Kerstin Eder, Mohammad Hosseinabady, University of Bristol, UK

Ke Talk structure

- 1. Introduction to Tegra TX1 SoC and power modelling methodology.
- 2. Power modelling with per-frequency and unified models.
- 3. Understanding the impact of device temperature on power predictions.
- 4. Conclusions and future work.



Ke Tegra TX1 MPSoC

- Heterogenous device with CPU and GPU compute resources.
- Previously we have investigated power modelling on the big.LITTLE CPU and in this work we focus on the GPU.
- Methodology should also be applicable to TX2 and Xavier.

Compute Resource	Hardware Architecture	Frequency range (MHz)	Voltage range (Volt)	
CPU	4 64-bit A57 4 64-bit A53	204 - 1734	0.84 – 1.22	
GPU	256 CUDA cores Maxwell	76 - 998	0.82 - 1.09	

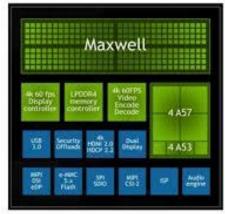
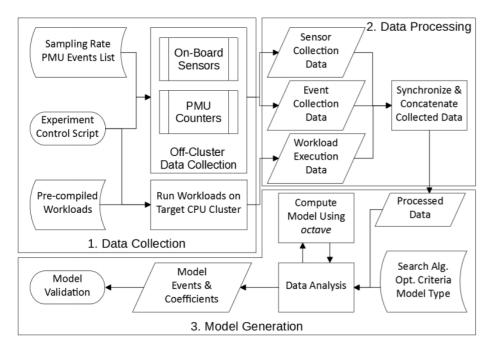


Figure 5 NVIDIA Tegra XI Mobile Processor


Tegra TX1 hardware details

Power modelling methodology overview

- Data collection is board/device dependent.
- Synchronization needed to synchronize events with power sensors when multiple runs are used to collect sensor data.
- Independent CUDA benchmarks for linear regression train and test phases.
 CUDA Rodinia Train Set

CUDA Rodinia Train Set			
stream_cluster	srad_v1		
particle_filter	srad_v2		
mmumergpu	pathfinder		
leukocyte	myocite		
lavaMD	kmeans		
backprop	bfs		
b+tree	cfd		
heartwall	hotspot3d		
hotspot	hybridsort		
CUDA SDK Test Set			
binomialOptions	Montecarlo		
blackscholes	particles		
SobolQRNG	Radixsort		
Transpose	FDTD3d		
Texture3D	nbody		

Verformance counter selection and analysis

- Pre-selection of 13 performance counters based on user experience.
- Example commands to find best model with 4 counters and calculate model with 4 particular counters across all the available frequency/voltage points.

inst_executed_cs	Instructions executed by compute shaders (CS), not including replays		
sm_inst_executed_texture	Texture instructions executed		
sm_executed_ipc	The average instructions executed per active cycle per SM.		
sm_issued_ipc	The average instructions issued per active cycle per SM.		
<pre>sm_inst_executed _global_loads</pre>	The number of executed global loads		
sm_inst_executed _global_stores	The number of executed global stores		
threads_launched	Total threads launched. Increments by 1 per thread launched.		
sm_active_cycles	Sum of cycles that SM was active. Increments by O-NumSMs per cycle.		
sm_active_warps	Sum of warps that SM was active. Increments by 0-64 per cycle per SM.		
sm_warps_launched	Warps launched. Increments by 1 per warp launched		
gpu_busy	Cycles the graphics engine or the compute engine is busy.		
12_write_bytes	Number of bytes written to L2 cache		
12_read_bytes	Number of bytes read from L2 cache		

octave makemodel.sh -r measurement.txt b benchmark.txt -f 76,153,230,307,384,460,537,614,691, 768,844,921,998 -p 7 -m 1 -l 8,9,10,11,12,13,14,15,16,17,18,19,20 -n 4 - c 1 - o 2

```
./octave_makemodel.sh -r
    power_measurement.txt -b benchmark.
    txt -f
    76,153,230,307,384,460,537,614,691,
    768,844,921,998 -p 7 -e 8,11,13,19 -o
    2
```

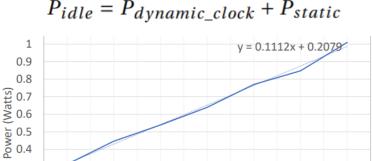

Ver-frequency models

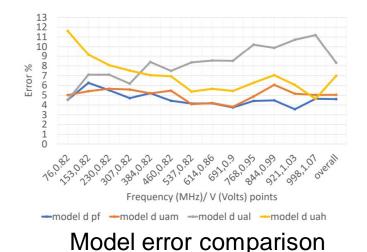
 General form of the considered model with events normalized by clock cycles.

 $P_{GPUfreq_1} = \alpha_0 + \alpha_1 \times events_1/cycles + \dots + \alpha_n$ $\times events_n/cycles$

- Multiple linear regression calculates the α coefficients with one constant used to capture idle power.
- The per-frequency model has a different set of coefficients for each voltage/frequency pair. Table shows example at frequency 76 MHz and voltage 0.82V

		Counter 1 / Value @ 76 MHz	Counter 2 / Value @ 76 MHz	Counter 3 / Value @ 76 MHz	Counter 4 / Value @ 76 MHz	Constant @ 76 MHz
	Model A	inst_exec uted_cs / 0.0005	Inst_executed _global_stores / 0.0029	gpu_busy / 6.45E- 05	sm_activ e_cycles / 0.0003	0.313446
	Model B	inst_exec uted_cs / 0.0005	sm_inst_exe cuted_textu re/ 0.0019	sm_active_ warps / 2.0038E-06	sm_inst_exe cuted_lobal _loads / - 0.00020	0.333461
	Model C	inst_exec uted_cs / 0.0009	sm_inst_exe cuted_textu re/ 0.0047	sm_active_cyc les / 0.00066	gpu_busy / - 0.00021	0.4165
	Model D	inst_exec uted_cs / 0.0011	sm_inst_glo bal_stores/ 0.030	gpu_busy / - 3.3929E-05	sm_active_ warps / 4.6137E-06	0.4324




Vnified models

- Can we use a single set of coefficients and scale the power to other frequency and voltage points? Less data to handle.
 - This takes into account that for each voltage level multiple frequency points are possible according to the DVFS table.
 - Isolating static power is also useful to predict the temperature impact on static power (no effect dynamic power).

$$P_{dynamic_clock} = alpha \times C \times V^2 \times f$$

$$P_{GPUfreq_x} = (P_{GPUfreq_1} - P_{GPUsta_x})$$
$$\times \frac{freq_1}{freq_x} \times (\frac{volt_1}{volt_x})^2 + P_{GPUsta_x} \times (\frac{volt_1}{volt_x})^2$$

Tegra TX1 idle power

307

384

460

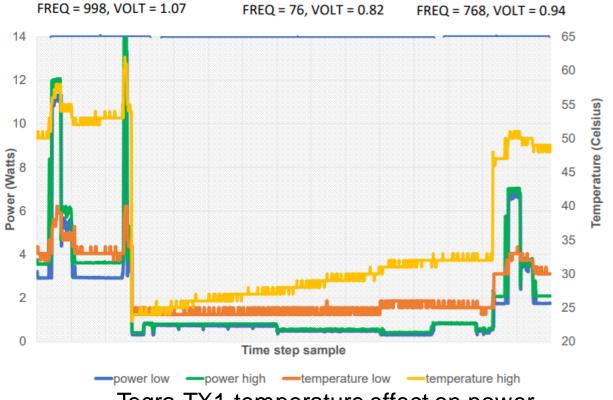
537

153

230

0.3

0.2

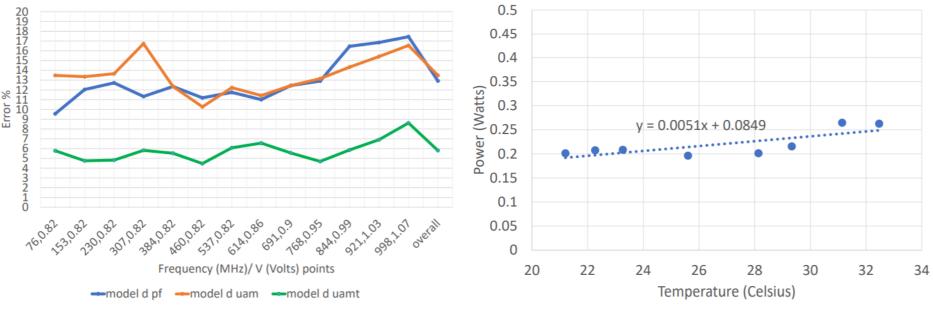

0.1

76

K Temperature and power analysis

- Understanding the effects of temperature in power.
 - We observe up to 20% power variation between 55C (fan off) and 35C (fan on) temperature operation.
 - Specially relevant for fanless deployments of the device.

Tegra TX1 temperature effect on power



Ke Temperature-aware power model

- Extending unified power model to account for temperature scaling.
- Linear relation between static power and temperature scaled to different voltage levels.
- Error at high temperature maintained around 5%.

$$\begin{split} P_{GPUfreq_x} &= (P_{GPUfreq_ref} - (Tref \\ &\times 0.0051 + 0.0849)W) \times \frac{freq_x}{380MHz} \\ &\times (\frac{volt_x}{0.82V})^2 + (T \times 0.0051 + 0.0849)W \times (\frac{volt_x}{0.82V})^2 \end{split}$$

Temperature-aware power model

Temperature impact on static power

Ke Conclusions

- Tegra SoC TX1 GPU instrumented with power measurement and performance counter features and a power model developed based on multiple-linear regression.
- Extended to multiple voltage and frequency points with per-frequency and unified models accuracy of around 5% executing varied CUDA benchmarks.
- The hybrid unified model uses local events (i.e. performance counters) and global states (i.e. voltage, frequency and temperature) to obtain a general solution.
- This general solution eliminates temperature induced prediction errors of up to 20% and accounts for the multiple frequency points possible for a single voltage level.

Ke Acknowledgement

- Thanks to EPSRC and for the support with the ENEAC projects, Royal Society with MINET project and the H2020 TeamPlay project.
- Questions ?

