POLITECNICO MILANO 1863

Automated Precision Tuning in Activity Classification Systems: A Case Study

N. Fossati, D. Cattaneo, M. Chiari, S. Cherubin, G. Agosta 21 Jan 2020

Ageing of Population

Figure: Umarells, image courtesy of Wikimedia

Fossati et al.

How to Help: IoT Devices

Constant monitoring

- Real-time reactions
- Pervasive technology
- Devices not (or minimally) intrusive

Fossati et al.

Traditional Issues in the IoT World

Requirements of IoT requires to leverage several trade-offs

Battery Life Computing Performance
HW Simplicity HW Capabilities

Fossati et al.

Requirements of IoT requires to leverage several trade-offs

Traditional Issues in the IoT World

Battery Life Computing Performance
HW Simplicity HW Capabilities

Introducing another trade-off

Accuracy Performance

Fossati et al.

Requirements of IoT requires to leverage several trade-offs

Traditional Issues in the IoT World

Battery Life Computing Performance
HW Simplicity HW Capabilities

Introducing another trade-off

Accuracy Performance

Approximate Computing: Precision Tuning

Fixed point Floating Point

Fossati et al.

Our Case Study

Activity Classification for Fall Detection

- umarell wears IoT device
- IoT device is equipped with sensors (e.g. accelerometer)
- machine learning classifier continously process sensor data
- dangerous event recognized trigger emergency procedure

POLITECNICO MILANO 1863

Our Case Study

Activity Classification for Fall Detection

- umarell wears IoT device
- IoT device is equipped with sensors (e.g. accelerometer)
- machine learning classifier continously process sensor data

POLITECNICO MILANO 1863

dangerous event recognized trigger emergency procedure

We consider a state-of-the-art approach for data collection and classification $^{1} \ \ \,$

Fossati et al.

¹Z. Liu et al., "A Benchmark Database and Baseline Evaluation for Fall Detection Based on Wearable Sensors for the Internet of Medical Things Platform,"

We consider a state-of-the-art approach for data collection and classification $^{1} \ \ \,$

Input: total acceleration, minimum and maximum z-acceleration

Features are normalized, then labeled by KNN algorithm

¹Z. Liu et al., "A Benchmark Database and Baseline Evaluation for Fall Detection Based on Wearable Sensors for the Internet of Medical Things Platform,"

We consider a state-of-the-art approach for data collection and classification $^{1} \ \ \,$

- Input: total acceleration, minimum and maximum z-acceleration
- Features are normalized, then labeled by KNN algorithm
- We enable classification to run *locally* instead of offline
 - Network connection may be unavailable
 - Offline identification of the problem may be too late

¹Z. Liu et al., "A Benchmark Database and Baseline Evaluation for Fall Detection Based on Wearable Sensors for the Internet of Medical Things Platform,"

Goal Avoid floating point processing: use fixed point instead

Knowledge Input normalization

Error Number of mispredictions

Fossati et al.

Precision Tuning Framework

Two classes of precision tuning frameworks

Static Analysis Requires Code Annotations Profinling & Dynamic Analysis Requires Code Instrumentation

Fossati et al.

POLITECNICO MILANO 1863

7/15

Precision Tuning Framework 7/15 Two classes of precision tuning frameworks

Static Analysis

Tuning Assistant for Floating point to Fixed point Optimization

Fossati et al.

TAFFO requires developers to put hints about runtime variables ranges. Annotations are used to specify them:

double minSMV
__attribute((annotate("scalar(range(-25,25))")));

 minSMV will be converted into fixed point representation, numerical range at runtime: [-25, 25].

Fossati et al.

HW setup

STM3220G-EVAL board

- ARM Cortex M3
- 16 Mbit of SRAM
- no FPU

IDM-8351 digital multimeter

IoT devices typically require ad-hoc software systems that have to adapt to specific HW configurations.

- We reproduce this scenario using the real-time operating system MIOSIX².
- We compile our code using LLVM and CLANG version 8.0.1
 using different optimization levels: -O3 -Ofast -Os -Oz
- Measure 100 iterations time-frame

²miosix.org

Results: Speedup TAFFO vs original

11/15

Fossati et al.

Results: Energy

Tool	Option	Size	Т	$I_{\mu C}$	$V_{\mu C}$	Р	E
	set	[KiB]	[ms]	[mA]	(V]	[mW]	[mJ]
TAFFO	-03	39.67	366.5	36.25	3.23	117.1	42.9
	-Ofast	39.79	366.0	36.25	3.23	117.1	42.9
	-0s	39.68	366.3	36.11	3.23	116.6	42.7
	-0z	33.26	384.7	35.88	3.23	115.9	44.6
vanilla	-03	40.35	2281.3	35.54	3.23	114.8	261.9
	-Ofast	41.39	2281.2	35.83	3.23	115.7	264.0
	-0s	31.53	2330.0	35.87	3.23	115.9	270.0
	-0z	31.13	2356.6	35.67	3.23	115.2	271.5

Fixed Point enable the use of devices without HW FPU.

Saving battery life

- Enabling more frequent monitoring
 - Potentially activating effective countermeasures (such as air bags)

Fossati et al.

Energy characterization of each device component

Explore alternative classification algorithms

Explore other machine learning use-cases

Fossati et al.

Thanks for your attention.

Questions?